Abstract
Modern ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. In this Technical Review, we analyse Eliashberg theory, density functional theory for superconductors as well as McMillan and Allen–Dynes equations, providing a summary of the underlying approximations and capabilities. We highlight in simple terms and with examples the many sources of error, which may lead to inaccurate predictions, including limitations on the applicability of the methods, subtle convergence aspects and improper practices often adopted to simplify the treatment of Coulomb interactions. Additionally, we compare the accuracy of the various methods by computing the critical temperature (Tc) for a broad range of superconductors and benchmarking against experimental results. We find that even the simple McMillan and Allen–Dynes formulas give Tc distributions centred on the experimental values. The Eliashberg theory and density functional theory for superconductors yield more peaked distributions, strongly reducing the possibility of incorrect predictions.
Similar content being viewed by others
References
Powell, J. in Superconducting Machines and Devices Vol. 1 (eds Foner, S. & Schwartz, B. B.) 1–85 (Springer, 1974).
Hull, J. R. et al. in Applied Superconductivity: Handbook on Devices and Applications (ed. Seidel, P.) Ch. 4 (John Wiley & Sons, 2015).
Yao, C. & Ma, Y. Superconducting materials: challenges and opportunities for large-scale applications. iScience 24, 102541 (2021).
Kamerlingh Onnes, H. The resistance of pure mercury at liquid helium temperature, Comm. 120b Phys. Lab. Univ. Leiden. KNAW Proc. Sec. Sci. 13, 1274 (1911).
Kamerlingh Onnes, H. The disappearance of the resistance of mercury, Comm. 122b Phys. Lab. Univ. Leiden. KNAW Proc. Sec. Sci. 14, 113 (1911).
Meissner, W. & Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit [German]. Naturwissenschaften 21, 787–788 (1933).
London, F. & London, H. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A Math. Phys. Sci. 149, 71–88 (1935).
Ginzburg, V. L. & Landau, L. D. in On Superconductivity and Superfluidity 113–137 (Springer Berlin Heidelberg, 2009).
Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Schireffer, J. R. Theory of Superconductivity (W. A. Benjamin, 1964).
Rickayzen, G. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 2 (CRC Press, 1969).
de Gennes, P.-G. Superconductivity of Metals and Alloys (W. A. Benjamin, 1966).
Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).
Meservey, R. & Schwartz, B. B. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 3 (CRC Press, 1969).
Ginsberg, D. & Hebel, L. C. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 4 (CRC Press, 1969).
Éliashberg, G. Interactions between electrons and lattice vibrations in a superconductor. J. Exp. Theor. Phys. 38, 966 (1960).
Migdal, A. Interaction between electrons and lattice vibrations in a normal metal. J. Exp. Theor. Phys. 34, 1438–1446 (1958).
Gor’kov, L. P. On the energy spectrum of superconductors. Sov. Phys. JETP 7, 505 (1958).
Silverman, R. A (ed.) Methods of Quantum Field Theory in Statistical Physics (Dover Publications, 1975).
Vonsovsky, S., Izyumov, Y., Kurmaev, E., Brandt, E. & Zavarnitsyn, A. Superconductivity of Transition Metals: Their Alloys and Compounds (Springer, 1982).
Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).
Allen, P. B. & Mitrović, B. in Solid State Physics Vol. 37 (eds Ehrenreich, H., Seitz, F. & Turnbull, D.) 1–92 (Academic Press, 1983).
Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).
Reining, L. The GW approximation: content, successes and limitations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1344 (2018).
Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).
Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron–phonon interaction. Phys. Rev. 125, 1263–1271 (1962).
Takada, Y. s- and p-wave pairings in the dilute electron gas: superconductivity mediated by the Coulomb hole in the vicinity of the Wigner-crystal phase. Phys. Rev. B 47, 5202–5211 (1993).
Takada, Y. Plasmon mechanism of superconductivity in two- and three-dimensional electron systems. J. Phys. Soc. Jpn 45, 786–794 (1978).
Scalapino, D. J., Schrieffer, J. R. & Wilkins, J. W. Strong-coupling superconductivity. I. Phys. Rev. 148, 263–279 (1966).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).
Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Dreizler, R. & Gross, E. K. U. Density Functional Theory — An Approach to the Quantum Many-Body Problem (Springer, 1990).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).
Savrasov, S. Y. & Savrasov, D. Y. Electron–phonon interactions and related physical properties of metals from linear-response theory. Phys. Rev. B 54, 16487 (1996).
Oliveira, L. N., Gross, E. K. U. & Kohn, W. Density-functional theory for superconductors. Phys. Rev. Lett. 60, 2430–2433 (1988).
Lüders, M. et al. Ab initio. Phys. Rev. B 72, 024545 (2005).
Gross, E. K. U. & Kohn, W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55, 2850–2852 (1985).
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Gonze, X. et al. The Abinit project: impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020).
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).
Heid, R. in The Physics of Correlated Insulators, Metals, and Superconductors: Lecture Notes of the Autumn School on Correlated Electrons 2017 Vol. 7 (ed. Pavarini, E.) 399–427 (Verlag des Forschungszentrum Jülich, 2017).
Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).
Flores-Livas, J. A. et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials. Phys. Rep. 856, 1–78 (2020).
Ummarino, G. A. C. in Emergent Phenomena in Correlated Matter (eds Pavarini, E., Koch, E. & Schollwöck, U.) Ch. 13 (Verlag des Forschungszentrum Jülich, 2013).
Marsiglio, F. & Carbotte, J. P. in Superconductivity Vol. 1 (eds Bennemann, K. H. & Ketterson, J. B.) 73–162 (Springer Berlin Heidelberg, 2008).
Margine, E. R. & Giustino, F. Anisotropic Migdal–Eliashberg theory using Wannier functions. Phys. Rev. B 87, 024505 (2013).
Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116 (2016).
Lucrezi, R. et al. Full-bandwidth anisotropic Migdal–Eliashberg theory and its application to superhydrides. Commun. Phys. 7, 33 (2024).
Arita, R. et al. Nonempirical calculation of superconducting transition temperatures in light-element superconductors. Adv. Mater. 29, 1602421 (2017).
Sanna, A. et al. Ab initio Eliashberg theory: making genuine predictions of superconducting features. J. Phys. Soc. Jpn 87, 041012 (2018).
Davydov, A. et al. Ab initio theory of plasmonic superconductivity within the Eliashberg and density-functional formalisms. Phys. Rev. B 102, 214508 (2020).
Pellegrini, C., Heid, R. & Sanna, A. Eliashberg theory with ab-initio Coulomb interactions: a minimal numerical scheme applied to layered superconductors. J. Phys. Mater. 5, 024007 (2022).
Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960).
Akashi, R. Revisiting homogeneous electron gas in pursuit of properly normed ab initio Eliashberg theory. Phys. Rev. B 105, 104510 (2022).
Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).
Calandra, M., Profeta, G. & Mauri, F. Adiabatic and nonadiabatic phonon dispersion in a Wannier function approach. Phys. Rev. B 82, 165111 (2010).
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).
Allen, P. B. Fermi-surface harmonics: a general method for nonspherical problems. Application to Boltzmann and Eliashberg equations. Phys. Rev. B 13, 1416–1427 (1976).
Floris, A. et al. Superconducting properties of MgB2 from first principles. Phys. Rev. Lett. 94, 037004 (2005).
Sanna, A. et al. Anisotropic gap of superconducting CaC6: a first-principles density functional calculation. Phys. Rev. B 75, 020511 (2007).
Sanna, A. et al. Real-space anisotropy of the superconducting gap in the charge-density wave material 2H-NbSe2. npj Quantum Mater. 7, 6 (2022).
Kawamura, M., Akashi, R. & Tsuneyuki, S. Anisotropic superconducting gaps in YNi2B2C: a first-principles investigation. Phys. Rev. B 95, 054506 (2017).
Heil, C. et al. Origin of superconductivity and latent charge density wave in NbS2. Phys. Rev. Lett. 119, 087003 (2017).
Paudyal, H., Poncé, S., Giustino, F. & Margine, E. R. Superconducting properties of MoTe2 from ab initio anisotropic Migdal–Eliashberg theory. Phys. Rev. B 101, 214515 (2020).
Floris, A., Sanna, A., Massidda, S. & Gross, E. K. U. Two-band superconductivity in Pb from ab initio calculations. Phys. Rev. B 75, 054508 (2007).
Profeta, G. et al. Superconductivity in lithium, potassium, and aluminum under extreme pressure: a first-principles study. Phys. Rev. Lett. 96, 047003 (2006).
Sanna, A. et al. Prediction of ambient pressure conventional superconductivity above 80 K in thermodynamically stable hydride compounds. npj Comput. Mater. 10, 44 (2024).
Suhl, H., Matthias, B. & Walker, L. Bardeen–Cooper–Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552–554 (1959).
Sanna, A. et al. Phononic self-energy effects and superconductivity in CaC6. Phys. Rev. B 85, 184514 (2012).
Bogoljubov, N. N., Tolmachov, V. V. & Širkov, D. V. A new method in the theory of superconductivity. Fortschr. Phys. 6, 605–682 (1958).
Wang, T. et al. Efficient ab initio Migdal–Eliashberg calculation considering the retardation effect in phonon-mediated superconductors. Phys. Rev. B 102, 134503 (2020).
Maki, K. in Superconductivity Vol. 2 (ed. Parks, R. D.) Ch. 18 (Marcel Dekker, 1969).
Vidberg, H. J. & Serene, J. W. Solving the Eliashberg equations by means of N-point Padé approximants. J. Low Temp. Phys. 29, 179–192 (1977).
Leavens, C. & Ritchie, D. Extension of the N-point Padé approximants solution of the Eliashberg equations to T ~ Tc. Solid State Commun. 53, 137–142 (1985).
The Elk FP-LAPW Code (SourceForge, 2024).
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).
Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).
Marques, M. A. L. et al. Ab initio. Phys. Rev. B 72, 024546 (2005).
Kurth, S., Marques, M., Lüders, M. & Gross, E. K. U. Local density approximation for superconductors. Phys. Rev. Lett. 83, 2628–2631 (1999).
Gross, E. K. U., Kurth, S., Capelle, K. & Lüders, M. in Density Functional Theory, NATO ASI Series B Vol. 337 (eds Gross, E. K. U. & Dreizler, R. M.) Ch. 17 (Springer, 1995).
Lathiotakis, N. N., Marques, M. A. L., Lüders, M., Fast, L. & Gross, E. K. U. Density functional theory for superconductors. Int. J. Quantum Chem. 99, 790–797 (2004).
Sanna, A. in The Physics of Correlated Insulators, Metals, and Superconductors Vol. 7 (eds Pavarini, E., Koch, E., Scalettar, R. & Richard, M.) Ch. 16 (Verlag des Forschungszentrum Jülich, 2017).
Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).
Sanna, A., Pellegrini, C. & Gross, E. K. U. Combining Eliashberg theory with density functional theory for the accurate prediction of superconducting transition temperatures and gap functions. Phys. Rev. Lett. 125, 057001 (2020).
Sham, L. J. & Schlüter, M. Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888–1891 (1983).
Akashi, R. & Arita, R. Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures. Phys. Rev. Lett. 111, 057006 (2013).
Akashi, R. & Arita, R. Density functional theory for plasmon-assisted superconductivity. J. Phys. Soc. Jpn. 83, 061016 (2014).
Akashi, R. & Arita, R. Nonempirical study of superconductivity in alkali-doped fullerides based on density functional theory for superconductors. Phys. Rev. B 88, 054510 (2013).
Akashi, R., Nakamura, K., Arita, R. & Imada, M. High-temperature superconductivity in layered nitrides β-LixMNCl (M = Ti, Zr, Hf): insights from density functional theory for superconductors. Phys. Rev. B 86, 054513 (2012).
Akashi, R., Kawamura, M., Tsuneyuki, S., Nomura, Y. & Arita, R. First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B 91, 224513 (2015).
Essenberger, F. et al. Superconducting pairing mediated by spin fluctuations from first principles. Phys. Rev. B 90, 214504 (2014).
Linscheid, A., Sanna, A., Floris, A. & Gross, E. K. U. First-principles calculation of the real-space order parameter and condensation energy density in phonon-mediated superconductors. Phys. Rev. Lett. 115, 097002 (2015).
Grosso, G. & Parravicini, G. P. Solid State Physics 2nd edn (Academic Press, 2014).
Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).
Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).
Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).
Koretsune, T. & Arita, R. Efficient method to calculate the electron–phonon coupling constant and superconducting transition temperature. Comput. Phys. Commun. 220, 239–242 (2017).
Eiguren, A. & Ambrosch-Draxl, C. Wannier interpolation scheme for phonon-induced potentials: application to bulk MgB2, W, and the (1 × 1) H-covered W(110) surface. Phys. Rev. B 78, 045124 (2008).
van Setten, M. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Kohn, W. Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393–394 (1959).
Kong, Y., Dolgov, O. V., Jepsen, O. & Andersen, O. K. Electron–phonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B 64, 020501 (2001).
Calandra, M. & Mauri, F. Electron–phonon coupling and phonon self-energy in MgB2: interpretation of MgB2 Raman spectra. Phys. Rev. B 71, 064501 (2005).
Golubov, A. A. et al. Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. J. Phys. Condens. Matter 14, 1353 (2002).
Perdew, J. P. & Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577, 1–20 (2001).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Lee, K.-H., Chang, K. J. & Cohen, M. L. First-principles calculations of the Coulomb pseudopotential μ*: application to Al. Phys. Rev. B 52, 1425–1428 (1995).
Lee, K.-H. & Chang, K. J. Linear-response calculation of the Coulomb pseudopotential μ* for Nb. Phys. Rev. B 54, 1419–1422 (1996).
Massidda, S. et al. The role of Coulomb interaction in the superconducting properties of CaC6 and H under pressure. Supercond. Sci. Technol. 22, 034006 (2009).
Marini, A., Onida, G. & Del Sole, R. Quasiparticle electronic structure of copper in the GW approximation. Phys. Rev. Lett. 88, 016403 (2001).
Sanna, A. et al. Ab initio prediction of pressure-induced superconductivity in potassium. Phys. Rev. B 73, 144512 (2006).
Flores-Livas, J. A. & Sanna, A. Superconductivity in intercalated group-IV honeycomb structures. Phys. Rev. B 91, 054508 (2015).
Flores-Livas, A. J., Sanna, A. & Gross, E. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 89, 1–6 (2016).
Marini, G. et al. Superconducting Chevrel phase PbMo6S8 from first principles. Phys. Rev. B 103, 144507 (2021).
Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).
Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237 (1998).
Giuliani, G., Vignale, G. & Press, C. U. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).
Kukkonen, C. A. & Overhauser, A. W. Electron–electron interaction in simple metals. Phys. Rev. B 20, 550–557 (1979).
Vignale, G. & Singwi, K. S. Possibility of superconductivity in the electron–hole liquid. Phys. Rev. B 31, 2729–2749 (1985).
Ng, T. K. & Singwi, K. S. Effective interactions for self-energy. I. Theory. Phys. Rev. B 34, 7738–7742 (1986).
Richardson, C. F. & Ashcroft, N. W. Effective electron–electron interactions and the theory of superconductivity. Phys. Rev. B 55, 15130–15145 (1997).
Gell-Mann, M. & Brueckner, K. A. Correlation energy of an electron gas at high density. Phys. Rev. 106, 364–368 (1957).
Pellegrini, C., Kukkonen, C. & Sanna, A. Ab initio calculations of superconducting transition temperatures: when going beyond RPA is essential. Phys. Rev. B 108, 064511 (2023).
Lischner, J., Bazhirov, T., MacDonald, A. H., Cohen, M. L. & Louie, S. G. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide. Phys. Rev. B 91, 020502 (2015).
Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).
Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004).
Lide, D. R. & Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2010).
Roberts, B. W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 5, 581–822 (1976).
Cerqueira, T. F. T., Sanna, A. & Marques, M. A. L. Sampling the materials space for conventional superconducting materials. Adv. Mater. 36, 2307085 (2023).
Mattheiss, L. F., Gyorgy, E. M. & Johnson, D. W. Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 37, 3745–3746 (1988).
Li, Z., Antonius, G., Wu, M., da Jornada, F. H. & Louie, S. G. Electron–phonon coupling from ab initio linear-response theory within the GW method: correlation-enhanced interactions and superconductivity in Ba1−xKxBiO3. Phys. Rev. Lett. 122, 186402 (2019).
Wen, C. H. P. et al. Unveiling the superconducting mechanism of Ba0.51K0.49BiO3. Phys. Rev. Lett. 121, 117002 (2018).
Takabayashi, Y. & Prassides, K. Unconventional high-Tc superconductivity in fullerides. Philos. Transact. R. Soc. A Math. Phys. Eng. Sci. 374, 20150320 (2016).
Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).
Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
Zhu, L. et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials. Sci. Adv. 6, eaay8361 (2020).
Boeri, L. & Bachelet, G. B. Viewpoint: the road to room-temperature conventional superconductivity. J. Phys. Condens. Matter 31, 234002 (2019).
Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter 34, 183002 (2022).
Di Cataldo, S., Heil, C., von der Linden, W. & Boeri, L. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B 104, L020511 (2021).
Lischner, J., Bazhirov, T., MacDonald, A. H., Cohen, M. L. & Louie, S. G. Effect of spin fluctuations on quasiparticle excitations: first-principles theory and application to sodium and lithium. Phys. Rev. B 89, 081108 (2014).
Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).
Annett, J. F. Superconductivity, Superfluids and Condensates (Oxford Univ. Press, 2004).
Lee, H. et al. Electron–phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Defang Duan, Mitsuaki Kawamura and Ertugrul Karaca for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pellegrini, C., Sanna, A. Ab initio methods for superconductivity. Nat Rev Phys 6, 509–523 (2024). https://doi.org/10.1038/s42254-024-00738-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00738-9
- Springer Nature Limited