Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Ab initio methods for superconductivity

  • Technical Review
  • Published:

From Nature Reviews Physics

View current issue Sign up to alerts

Abstract

Modern ab initio theories of superconductivity allow characterizing and predicting phonon-mediated superconductors. In this Technical Review, we analyse Eliashberg theory, density functional theory for superconductors as well as McMillan and Allen–Dynes equations, providing a summary of the underlying approximations and capabilities. We highlight in simple terms and with examples the many sources of error, which may lead to inaccurate predictions, including limitations on the applicability of the methods, subtle convergence aspects and improper practices often adopted to simplify the treatment of Coulomb interactions. Additionally, we compare the accuracy of the various methods by computing the critical temperature (Tc) for a broad range of superconductors and benchmarking against experimental results. We find that even the simple McMillan and Allen–Dynes formulas give Tc distributions centred on the experimental values. The Eliashberg theory and density functional theory for superconductors yield more peaked distributions, strongly reducing the possibility of incorrect predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Calculation of superconducting gap and Tc.
Fig. 2: Tc convergence and error analysis for base centre cubic-Nb.
Fig. 3: Ab initio predictions of superconducting Tc versus experimental values.

Similar content being viewed by others

References

  1. Powell, J. in Superconducting Machines and Devices Vol. 1 (eds Foner, S. & Schwartz, B. B.) 1–85 (Springer, 1974).

  2. Hull, J. R. et al. in Applied Superconductivity: Handbook on Devices and Applications (ed. Seidel, P.) Ch. 4 (John Wiley & Sons, 2015).

  3. Yao, C. & Ma, Y. Superconducting materials: challenges and opportunities for large-scale applications. iScience 24, 102541 (2021).

    ADS  Google Scholar 

  4. Kamerlingh Onnes, H. The resistance of pure mercury at liquid helium temperature, Comm. 120b Phys. Lab. Univ. Leiden. KNAW Proc. Sec. Sci. 13, 1274 (1911).

    Google Scholar 

  5. Kamerlingh Onnes, H. The disappearance of the resistance of mercury, Comm. 122b Phys. Lab. Univ. Leiden. KNAW Proc. Sec. Sci. 14, 113 (1911).

    Google Scholar 

  6. Meissner, W. & Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit [German]. Naturwissenschaften 21, 787–788 (1933).

    ADS  Google Scholar 

  7. London, F. & London, H. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A Math. Phys. Sci. 149, 71–88 (1935).

    ADS  Google Scholar 

  8. Ginzburg, V. L. & Landau, L. D. in On Superconductivity and Superfluidity 113–137 (Springer Berlin Heidelberg, 2009).

  9. Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956).

    ADS  Google Scholar 

  10. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS  MathSciNet  Google Scholar 

  11. Schireffer, J. R. Theory of Superconductivity (W. A. Benjamin, 1964).

  12. Rickayzen, G. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 2 (CRC Press, 1969).

  13. de Gennes, P.-G. Superconductivity of Metals and Alloys (W. A. Benjamin, 1966).

  14. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover Publications, 2004).

  15. Meservey, R. & Schwartz, B. B. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 3 (CRC Press, 1969).

  16. Ginsberg, D. & Hebel, L. C. in Superconductivity 1st edn, Vol. 1 (ed. Parks, R. D.) Ch. 4 (CRC Press, 1969).

  17. Éliashberg, G. Interactions between electrons and lattice vibrations in a superconductor. J. Exp. Theor. Phys. 38, 966 (1960).

    MathSciNet  Google Scholar 

  18. Migdal, A. Interaction between electrons and lattice vibrations in a normal metal. J. Exp. Theor. Phys. 34, 1438–1446 (1958).

    Google Scholar 

  19. Gor’kov, L. P. On the energy spectrum of superconductors. Sov. Phys. JETP 7, 505 (1958).

    Google Scholar 

  20. Silverman, R. A (ed.) Methods of Quantum Field Theory in Statistical Physics (Dover Publications, 1975).

  21. Vonsovsky, S., Izyumov, Y., Kurmaev, E., Brandt, E. & Zavarnitsyn, A. Superconductivity of Transition Metals: Their Alloys and Compounds (Springer, 1982).

  22. Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).

    ADS  Google Scholar 

  23. Allen, P. B. & Mitrović, B. in Solid State Physics Vol. 37 (eds Ehrenreich, H., Seitz, F. & Turnbull, D.) 1–92 (Academic Press, 1983).

  24. Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    ADS  MathSciNet  Google Scholar 

  25. Reining, L. The GW approximation: content, successes and limitations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1344 (2018).

    Google Scholar 

  26. Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).

    ADS  Google Scholar 

  27. Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron–phonon interaction. Phys. Rev. 125, 1263–1271 (1962).

    ADS  Google Scholar 

  28. Takada, Y. s- and p-wave pairings in the dilute electron gas: superconductivity mediated by the Coulomb hole in the vicinity of the Wigner-crystal phase. Phys. Rev. B 47, 5202–5211 (1993).

    ADS  Google Scholar 

  29. Takada, Y. Plasmon mechanism of superconductivity in two- and three-dimensional electron systems. J. Phys. Soc. Jpn 45, 786–794 (1978).

    ADS  Google Scholar 

  30. Scalapino, D. J., Schrieffer, J. R. & Wilkins, J. W. Strong-coupling superconductivity. I. Phys. Rev. 148, 263–279 (1966).

    ADS  Google Scholar 

  31. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS  MathSciNet  Google Scholar 

  32. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS  MathSciNet  Google Scholar 

  33. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    ADS  Google Scholar 

  34. Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).

    ADS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Google Scholar 

  36. Dreizler, R. & Gross, E. K. U. Density Functional Theory — An Approach to the Quantum Many-Body Problem (Springer, 1990).

  37. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    ADS  Google Scholar 

  38. Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).

    ADS  Google Scholar 

  39. Savrasov, S. Y. & Savrasov, D. Y. Electron–phonon interactions and related physical properties of metals from linear-response theory. Phys. Rev. B 54, 16487 (1996).

    ADS  Google Scholar 

  40. Oliveira, L. N., Gross, E. K. U. & Kohn, W. Density-functional theory for superconductors. Phys. Rev. Lett. 60, 2430–2433 (1988).

    ADS  Google Scholar 

  41. Lüders, M. et al. Ab initio. Phys. Rev. B 72, 024545 (2005).

    ADS  Google Scholar 

  42. Gross, E. K. U. & Kohn, W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55, 2850–2852 (1985).

    ADS  Google Scholar 

  43. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    ADS  Google Scholar 

  44. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  45. Gonze, X. et al. The Abinit project: impact, environment and recent developments. Comput. Phys. Commun. 248, 107042 (2020).

    Google Scholar 

  46. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).

  47. Heid, R. in The Physics of Correlated Insulators, Metals, and Superconductors: Lecture Notes of the Autumn School on Correlated Electrons 2017 Vol. 7 (ed. Pavarini, E.) 399–427 (Verlag des Forschungszentrum Jülich, 2017).

  48. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    ADS  Google Scholar 

  49. Flores-Livas, J. A. et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials. Phys. Rep. 856, 1–78 (2020).

    ADS  MathSciNet  Google Scholar 

  50. Ummarino, G. A. C. in Emergent Phenomena in Correlated Matter (eds Pavarini, E., Koch, E. & Schollwöck, U.) Ch. 13 (Verlag des Forschungszentrum Jülich, 2013).

  51. Marsiglio, F. & Carbotte, J. P. in Superconductivity Vol. 1 (eds Bennemann, K. H. & Ketterson, J. B.) 73–162 (Springer Berlin Heidelberg, 2008).

  52. Margine, E. R. & Giustino, F. Anisotropic Migdal–Eliashberg theory using Wannier functions. Phys. Rev. B 87, 024505 (2013).

    ADS  Google Scholar 

  53. Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116 (2016).

    ADS  MathSciNet  Google Scholar 

  54. Lucrezi, R. et al. Full-bandwidth anisotropic Migdal–Eliashberg theory and its application to superhydrides. Commun. Phys. 7, 33 (2024).

    Google Scholar 

  55. Arita, R. et al. Nonempirical calculation of superconducting transition temperatures in light-element superconductors. Adv. Mater. 29, 1602421 (2017).

    Google Scholar 

  56. Sanna, A. et al. Ab initio Eliashberg theory: making genuine predictions of superconducting features. J. Phys. Soc. Jpn 87, 041012 (2018).

    ADS  Google Scholar 

  57. Davydov, A. et al. Ab initio theory of plasmonic superconductivity within the Eliashberg and density-functional formalisms. Phys. Rev. B 102, 214508 (2020).

    ADS  Google Scholar 

  58. Pellegrini, C., Heid, R. & Sanna, A. Eliashberg theory with ab-initio Coulomb interactions: a minimal numerical scheme applied to layered superconductors. J. Phys. Mater. 5, 024007 (2022).

    Google Scholar 

  59. Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960).

    ADS  MathSciNet  Google Scholar 

  60. Akashi, R. Revisiting homogeneous electron gas in pursuit of properly normed ab initio Eliashberg theory. Phys. Rev. B 105, 104510 (2022).

    ADS  Google Scholar 

  61. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    ADS  Google Scholar 

  62. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    ADS  Google Scholar 

  63. Calandra, M., Profeta, G. & Mauri, F. Adiabatic and nonadiabatic phonon dispersion in a Wannier function approach. Phys. Rev. B 82, 165111 (2010).

    ADS  Google Scholar 

  64. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    ADS  Google Scholar 

  65. Allen, P. B. Fermi-surface harmonics: a general method for nonspherical problems. Application to Boltzmann and Eliashberg equations. Phys. Rev. B 13, 1416–1427 (1976).

    ADS  MathSciNet  Google Scholar 

  66. Floris, A. et al. Superconducting properties of MgB2 from first principles. Phys. Rev. Lett. 94, 037004 (2005).

    ADS  Google Scholar 

  67. Sanna, A. et al. Anisotropic gap of superconducting CaC6: a first-principles density functional calculation. Phys. Rev. B 75, 020511 (2007).

    ADS  Google Scholar 

  68. Sanna, A. et al. Real-space anisotropy of the superconducting gap in the charge-density wave material 2H-NbSe2. npj Quantum Mater. 7, 6 (2022).

    ADS  Google Scholar 

  69. Kawamura, M., Akashi, R. & Tsuneyuki, S. Anisotropic superconducting gaps in YNi2B2C: a first-principles investigation. Phys. Rev. B 95, 054506 (2017).

    ADS  Google Scholar 

  70. Heil, C. et al. Origin of superconductivity and latent charge density wave in NbS2. Phys. Rev. Lett. 119, 087003 (2017).

    ADS  Google Scholar 

  71. Paudyal, H., Poncé, S., Giustino, F. & Margine, E. R. Superconducting properties of MoTe2 from ab initio anisotropic Migdal–Eliashberg theory. Phys. Rev. B 101, 214515 (2020).

    ADS  Google Scholar 

  72. Floris, A., Sanna, A., Massidda, S. & Gross, E. K. U. Two-band superconductivity in Pb from ab initio calculations. Phys. Rev. B 75, 054508 (2007).

    ADS  Google Scholar 

  73. Profeta, G. et al. Superconductivity in lithium, potassium, and aluminum under extreme pressure: a first-principles study. Phys. Rev. Lett. 96, 047003 (2006).

    ADS  Google Scholar 

  74. Sanna, A. et al. Prediction of ambient pressure conventional superconductivity above 80 K in thermodynamically stable hydride compounds. npj Comput. Mater. 10, 44 (2024).

    ADS  Google Scholar 

  75. Suhl, H., Matthias, B. & Walker, L. Bardeen–Cooper–Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552–554 (1959).

    ADS  Google Scholar 

  76. Sanna, A. et al. Phononic self-energy effects and superconductivity in CaC6. Phys. Rev. B 85, 184514 (2012).

    ADS  Google Scholar 

  77. Bogoljubov, N. N., Tolmachov, V. V. & Širkov, D. V. A new method in the theory of superconductivity. Fortschr. Phys. 6, 605–682 (1958).

    Google Scholar 

  78. Wang, T. et al. Efficient ab initio Migdal–Eliashberg calculation considering the retardation effect in phonon-mediated superconductors. Phys. Rev. B 102, 134503 (2020).

    ADS  Google Scholar 

  79. Maki, K. in Superconductivity Vol. 2 (ed. Parks, R. D.) Ch. 18 (Marcel Dekker, 1969).

  80. Vidberg, H. J. & Serene, J. W. Solving the Eliashberg equations by means of N-point Padé approximants. J. Low Temp. Phys. 29, 179–192 (1977).

    ADS  Google Scholar 

  81. Leavens, C. & Ritchie, D. Extension of the N-point Padé approximants solution of the Eliashberg equations to T ~ Tc. Solid State Commun. 53, 137–142 (1985).

    ADS  Google Scholar 

  82. The Elk FP-LAPW Code (SourceForge, 2024).

  83. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

    ADS  Google Scholar 

  84. Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).

    ADS  Google Scholar 

  85. Marques, M. A. L. et al. Ab initio. Phys. Rev. B 72, 024546 (2005).

    ADS  Google Scholar 

  86. Kurth, S., Marques, M., Lüders, M. & Gross, E. K. U. Local density approximation for superconductors. Phys. Rev. Lett. 83, 2628–2631 (1999).

    ADS  Google Scholar 

  87. Gross, E. K. U., Kurth, S., Capelle, K. & Lüders, M. in Density Functional Theory, NATO ASI Series B Vol. 337 (eds Gross, E. K. U. & Dreizler, R. M.) Ch. 17 (Springer, 1995).

  88. Lathiotakis, N. N., Marques, M. A. L., Lüders, M., Fast, L. & Gross, E. K. U. Density functional theory for superconductors. Int. J. Quantum Chem. 99, 790–797 (2004).

    Google Scholar 

  89. Sanna, A. in The Physics of Correlated Insulators, Metals, and Superconductors Vol. 7 (eds Pavarini, E., Koch, E., Scalettar, R. & Richard, M.) Ch. 16 (Verlag des Forschungszentrum Jülich, 2017).

  90. Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).

    ADS  Google Scholar 

  91. Sanna, A., Pellegrini, C. & Gross, E. K. U. Combining Eliashberg theory with density functional theory for the accurate prediction of superconducting transition temperatures and gap functions. Phys. Rev. Lett. 125, 057001 (2020).

    ADS  MathSciNet  Google Scholar 

  92. Sham, L. J. & Schlüter, M. Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888–1891 (1983).

    ADS  Google Scholar 

  93. Akashi, R. & Arita, R. Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures. Phys. Rev. Lett. 111, 057006 (2013).

    ADS  Google Scholar 

  94. Akashi, R. & Arita, R. Density functional theory for plasmon-assisted superconductivity. J. Phys. Soc. Jpn. 83, 061016 (2014).

    ADS  Google Scholar 

  95. Akashi, R. & Arita, R. Nonempirical study of superconductivity in alkali-doped fullerides based on density functional theory for superconductors. Phys. Rev. B 88, 054510 (2013).

    ADS  Google Scholar 

  96. Akashi, R., Nakamura, K., Arita, R. & Imada, M. High-temperature superconductivity in layered nitrides β-LixMNCl (M = Ti, Zr, Hf): insights from density functional theory for superconductors. Phys. Rev. B 86, 054513 (2012).

    ADS  Google Scholar 

  97. Akashi, R., Kawamura, M., Tsuneyuki, S., Nomura, Y. & Arita, R. First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. Phys. Rev. B 91, 224513 (2015).

    ADS  Google Scholar 

  98. Essenberger, F. et al. Superconducting pairing mediated by spin fluctuations from first principles. Phys. Rev. B 90, 214504 (2014).

    ADS  Google Scholar 

  99. Linscheid, A., Sanna, A., Floris, A. & Gross, E. K. U. First-principles calculation of the real-space order parameter and condensation energy density in phonon-mediated superconductors. Phys. Rev. Lett. 115, 097002 (2015).

    ADS  Google Scholar 

  100. Grosso, G. & Parravicini, G. P. Solid State Physics 2nd edn (Academic Press, 2014).

  101. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    ADS  Google Scholar 

  102. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    ADS  Google Scholar 

  103. Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).

    ADS  Google Scholar 

  104. Koretsune, T. & Arita, R. Efficient method to calculate the electron–phonon coupling constant and superconducting transition temperature. Comput. Phys. Commun. 220, 239–242 (2017).

    ADS  Google Scholar 

  105. Eiguren, A. & Ambrosch-Draxl, C. Wannier interpolation scheme for phonon-induced potentials: application to bulk MgB2, W, and the (1 × 1) H-covered W(110) surface. Phys. Rev. B 78, 045124 (2008).

    ADS  Google Scholar 

  106. van Setten, M. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    ADS  Google Scholar 

  107. Kohn, W. Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393–394 (1959).

    ADS  Google Scholar 

  108. Kong, Y., Dolgov, O. V., Jepsen, O. & Andersen, O. K. Electron–phonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B 64, 020501 (2001).

    ADS  Google Scholar 

  109. Calandra, M. & Mauri, F. Electron–phonon coupling and phonon self-energy in MgB2: interpretation of MgB2 Raman spectra. Phys. Rev. B 71, 064501 (2005).

    ADS  Google Scholar 

  110. Golubov, A. A. et al. Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. J. Phys. Condens. Matter 14, 1353 (2002).

    ADS  Google Scholar 

  111. Perdew, J. P. & Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577, 1–20 (2001).

    ADS  Google Scholar 

  112. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS  Google Scholar 

  113. Lee, K.-H., Chang, K. J. & Cohen, M. L. First-principles calculations of the Coulomb pseudopotential μ*: application to Al. Phys. Rev. B 52, 1425–1428 (1995).

    ADS  Google Scholar 

  114. Lee, K.-H. & Chang, K. J. Linear-response calculation of the Coulomb pseudopotential μ* for Nb. Phys. Rev. B 54, 1419–1422 (1996).

    ADS  Google Scholar 

  115. Massidda, S. et al. The role of Coulomb interaction in the superconducting properties of CaC6 and H under pressure. Supercond. Sci. Technol. 22, 034006 (2009).

    ADS  Google Scholar 

  116. Marini, A., Onida, G. & Del Sole, R. Quasiparticle electronic structure of copper in the GW approximation. Phys. Rev. Lett. 88, 016403 (2001).

    ADS  Google Scholar 

  117. Sanna, A. et al. Ab initio prediction of pressure-induced superconductivity in potassium. Phys. Rev. B 73, 144512 (2006).

    ADS  Google Scholar 

  118. Flores-Livas, J. A. & Sanna, A. Superconductivity in intercalated group-IV honeycomb structures. Phys. Rev. B 91, 054508 (2015).

    ADS  Google Scholar 

  119. Flores-Livas, A. J., Sanna, A. & Gross, E. High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur. Phys. J. B 89, 1–6 (2016).

    Google Scholar 

  120. Marini, G. et al. Superconducting Chevrel phase PbMo6S8 from first principles. Phys. Rev. B 103, 144507 (2021).

    ADS  Google Scholar 

  121. Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).

    ADS  Google Scholar 

  122. Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237 (1998).

    ADS  Google Scholar 

  123. Giuliani, G., Vignale, G. & Press, C. U. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

  124. Kukkonen, C. A. & Overhauser, A. W. Electron–electron interaction in simple metals. Phys. Rev. B 20, 550–557 (1979).

    ADS  Google Scholar 

  125. Vignale, G. & Singwi, K. S. Possibility of superconductivity in the electron–hole liquid. Phys. Rev. B 31, 2729–2749 (1985).

    ADS  Google Scholar 

  126. Ng, T. K. & Singwi, K. S. Effective interactions for self-energy. I. Theory. Phys. Rev. B 34, 7738–7742 (1986).

    ADS  Google Scholar 

  127. Richardson, C. F. & Ashcroft, N. W. Effective electron–electron interactions and the theory of superconductivity. Phys. Rev. B 55, 15130–15145 (1997).

    ADS  Google Scholar 

  128. Gell-Mann, M. & Brueckner, K. A. Correlation energy of an electron gas at high density. Phys. Rev. 106, 364–368 (1957).

    ADS  MathSciNet  Google Scholar 

  129. Pellegrini, C., Kukkonen, C. & Sanna, A. Ab initio calculations of superconducting transition temperatures: when going beyond RPA is essential. Phys. Rev. B 108, 064511 (2023).

    ADS  Google Scholar 

  130. Lischner, J., Bazhirov, T., MacDonald, A. H., Cohen, M. L. & Louie, S. G. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide. Phys. Rev. B 91, 020502 (2015).

    ADS  Google Scholar 

  131. Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

    ADS  Google Scholar 

  132. Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004).

    ADS  Google Scholar 

  133. Lide, D. R. & Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2010).

  134. Roberts, B. W. Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 5, 581–822 (1976).

    ADS  Google Scholar 

  135. Cerqueira, T. F. T., Sanna, A. & Marques, M. A. L. Sampling the materials space for conventional superconducting materials. Adv. Mater. 36, 2307085 (2023).

    Google Scholar 

  136. Mattheiss, L. F., Gyorgy, E. M. & Johnson, D. W. Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 37, 3745–3746 (1988).

    ADS  Google Scholar 

  137. Li, Z., Antonius, G., Wu, M., da Jornada, F. H. & Louie, S. G. Electron–phonon coupling from ab initio linear-response theory within the GW method: correlation-enhanced interactions and superconductivity in Ba1−xKxBiO3. Phys. Rev. Lett. 122, 186402 (2019).

    ADS  Google Scholar 

  138. Wen, C. H. P. et al. Unveiling the superconducting mechanism of Ba0.51K0.49BiO3. Phys. Rev. Lett. 121, 117002 (2018).

    ADS  Google Scholar 

  139. Takabayashi, Y. & Prassides, K. Unconventional high-Tc superconductivity in fullerides. Philos. Transact. R. Soc. A Math. Phys. Eng. Sci. 374, 20150320 (2016).

    ADS  Google Scholar 

  140. Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).

    ADS  Google Scholar 

  141. Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

    Google Scholar 

  142. Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).

    ADS  Google Scholar 

  143. Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

    ADS  Google Scholar 

  144. Zhu, L. et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials. Sci. Adv. 6, eaay8361 (2020).

    ADS  Google Scholar 

  145. Boeri, L. & Bachelet, G. B. Viewpoint: the road to room-temperature conventional superconductivity. J. Phys. Condens. Matter 31, 234002 (2019).

    ADS  Google Scholar 

  146. Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Condens. Matter 34, 183002 (2022).

    ADS  Google Scholar 

  147. Di Cataldo, S., Heil, C., von der Linden, W. & Boeri, L. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B 104, L020511 (2021).

    Google Scholar 

  148. Lischner, J., Bazhirov, T., MacDonald, A. H., Cohen, M. L. & Louie, S. G. Effect of spin fluctuations on quasiparticle excitations: first-principles theory and application to sodium and lithium. Phys. Rev. B 89, 081108 (2014).

    ADS  Google Scholar 

  149. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    ADS  Google Scholar 

  150. Stewart, G. R. Unconventional superconductivity. Adv. Phys. 66, 75–196 (2017).

    ADS  Google Scholar 

  151. Annett, J. F. Superconductivity, Superfluids and Condensates (Oxford Univ. Press, 2004).

  152. Lee, H. et al. Electron–phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Camilla Pellegrini or Antonio Sanna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Defang Duan, Mitsuaki Kawamura and Ertugrul Karaca for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, C., Sanna, A. Ab initio methods for superconductivity. Nat Rev Phys 6, 509–523 (2024). https://doi.org/10.1038/s42254-024-00738-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00738-9

  • Springer Nature Limited