Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

We previously reported that the dismutase SOD1 is overexpressed in breast cancer. However, whether SOD1 plays an active role in tumor formation in vivo has never been demonstrated. Further, as luminal cells of normal breast epithelial cells are enriched in SOD1, whether SOD1 is essential for normal mammary gland development has never been determined. We initiated this study to investigate the role of SOD1 in mammary gland tumorigenesis as well as in normal mammary gland development. We crossed the inducible erbB2 (MMTV-iErbB2) and Wnt (MMTV-Wnt) transgenic mice to the SOD1 heterozygote or knockout mice. Our results show that SOD1 is essential for oncogene-driven proliferation, but not normal proliferation of the mammary gland associated with pregnancy or other normal proliferative tissues such as skin and intestines. We show that activation of the oncogene ErbB2 is associated with increased ROS and that high ROS sub-population of ErbB2 cancer cells show elevated SOD1. In the same cells, decrease in SOD1 is associated with an elevation in both apoptosis as well as oncogene-induced senescence. Based on these results, we suggest that SOD1 carries a housekeeping function that maintains ROS levels below a threshold that supports oncogene-dependent proliferation, while allowing escape from oncogene-induced senescence, independently of the oncogene driving tumor formation. These results identify SOD1 as an ideal target for cancer therapy as SOD1 inhibitors hold the potential to prevent the growth of cancers cells of diverse genotypes, activate multiple modes of cell death therefore making acquired resistance more difficult, while sparing normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Somwar R, Shum D, Djaballah H, Varmus H. Identification and preliminary characterization of novel small molecules that inhibit growth of human lung adenocarcinoma cells. J Biomol Screen. 2009;14:1176–84.

    Article  CAS  Google Scholar 

  2. Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood WW, Yang G, et al. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc Natl Acad Sci. 2011;108:16375–80.

    Article  CAS  Google Scholar 

  3. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.

    Article  CAS  Google Scholar 

  4. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:453–62.

    Article  Google Scholar 

  5. Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 2006. https://doi.org/10.1083/jcb.200512100.

    Article  CAS  Google Scholar 

  6. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria. J Biol Chem. 2001;276:38388–93.

    Article  CAS  Google Scholar 

  7. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. J Biol Chem. 2001;276:38084–9.

    CAS  PubMed  Google Scholar 

  8. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  CAS  Google Scholar 

  9. Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979;39:1141–9.

    CAS  PubMed  Google Scholar 

  10. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:jcb.201708007.

    Google Scholar 

  11. Finley LWS, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011;19:416–28.

    Article  CAS  Google Scholar 

  12. Papa L, Germain D. Estrogen receptor mediate a distinct mitochondrial unfolded protein response. JCS 2011;124: 1396–402.

    Article  CAS  Google Scholar 

  13. Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 2014. https://doi.org/10.1128/MCB.01337-13.

    Article  Google Scholar 

  14. Kenny TC, Germain D. From discovery of the CHOP axis and targeting ClpP to the identification of additional axes of the UPRmt driven by the estrogen receptor and SIRT3. J Bioenerg Biomembr. 2017;49:297–305.

    Article  CAS  Google Scholar 

  15. Kenny TC, Germain D. mtDNA, metastasis, and the Mitochondrial unfolded protein response (UPRmt). Front Cell Dev Biol. 2017;5:37.

    Article  Google Scholar 

  16. Kenny TC, Manfredi G, Germain D. The Mitochondrial unfolded protein response as a non-oncogene addiction to support adaptation to stress during transformation in cancer and beyond. Front Oncol. 2017;7:159.

    Article  Google Scholar 

  17. Kenny TC, Hart P, Ragazzi M, Sersinghe M, Chipuk J, Sagar M, et al. Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR mt to promote metastasis. Oncogene. 2017;36:4393–404.

    Article  CAS  Google Scholar 

  18. He C, Hart PC, Germain D, Bonini MG. SOD2 and the Mitochondrial UPR: partners regulating cellular phenotypic transitions. Trends Biochem Sci. 2016;41:568–77.

    Article  CAS  Google Scholar 

  19. Riar AK, Burstein SR, Palomo GM, Arreguin A, Manfredi G, Germain D. Sex specific activation of the ERα axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Hum Mol Genet. 2017;26:1318–27.

    Article  CAS  Google Scholar 

  20. Germain D. Toward the identification and the targeting of key players of the mitochondrial unfolded protein response (UPRmt) in cancer. J Bioenerg Biomembr. 2017;49:291.

    Article  CAS  Google Scholar 

  21. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40:893–904.

    Article  CAS  Google Scholar 

  22. Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharm. 2011;206:163–88.

    Article  CAS  Google Scholar 

  23. Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem. 2011;11:191–201.

    Article  CAS  Google Scholar 

  24. Papa L, Hahn M, Marsh EL, Evans BS, Germain D. SOD2 to SOD1 switch in breast cancer. J Biol Chem. 2014;289:5412–6.

    Article  CAS  Google Scholar 

  25. Slamon DJ, Will G, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian. Cancer Sci. 1989;244:707–12.

    CAS  Google Scholar 

  26. Elster N, Collins DM, Toomey S, Crown J, Eustace AJ, Hennessy BT. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res Treat. 2015;149:5–15.

    Article  CAS  Google Scholar 

  27. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell. 1989;57:931–6.

    Article  CAS  Google Scholar 

  28. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988;54:105–15.

    Article  CAS  Google Scholar 

  29. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci. 1992;89:10578–82.

    Article  CAS  Google Scholar 

  30. Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell. 2002;2:451–61.

    Article  CAS  Google Scholar 

  31. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015;10:1681–91.

    Article  CAS  Google Scholar 

  32. Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene. 2000;19:1002–9.

    Article  CAS  Google Scholar 

  33. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988;55:619–25.

    Article  CAS  Google Scholar 

  34. Kannan N, Nguyen LV, Makarem M, Dong Y, Shih K, Eirew P, et al. Glutathione-dependent and -independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. Proc Natl Acad Sci. 2014;111:7789–94.

    Article  CAS  Google Scholar 

  35. Matzuk MM, Dionne L, Guo Q, Kumar TR, Lebovitz R. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology. 1998;139:4008–11.

    Article  CAS  Google Scholar 

  36. Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem. 1998;273:7765–9.

    Article  CAS  Google Scholar 

  37. Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, et al. Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. Am J Pathol. 2013;183:1862–70.

    Article  CAS  Google Scholar 

  38. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci. 2010;107:8788–93.

    Article  CAS  Google Scholar 

  39. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14:709–21.

    Article  CAS  Google Scholar 

  40. Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS. Targeting SOD1 reduces experimental non-small-cell lung cancer. J Clin Invest. 2014;124:117–28.

    Article  CAS  Google Scholar 

  41. Bae J, Leo CP, Hsu Y, Hsueh AJW. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. 2000. https://doi.org/10.1074/jbc.M909826199.

    Article  CAS  Google Scholar 

  42. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell. 1997;88:593–602.

    Article  CAS  Google Scholar 

  43. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol. 2007;9:493.

    Article  CAS  Google Scholar 

  44. Li S, Fu L, Tian T, Deng L, Li H, Xia W, et al. Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Commun Signal. 2018;16:28.

    Article  Google Scholar 

  45. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  46. Papa L, Manfredi G, Germain D. SOD1, an unexpected novel target for cancer therapy. Genes Cancer. 2014;5:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sajesh BV, McManus KJ, Babu V, Sajesh KJM. Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells. Oncotarget. 2015;6:27907–22.

    Article  Google Scholar 

  48. Tsang CK, Chen M, Cheng X, White E, Burley SK, Steven XF, et al. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol Cell. 2018;70:502–.e8.

    Article  CAS  Google Scholar 

  49. Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 2013;152:224–35.

    Article  CAS  Google Scholar 

  50. Hart PC, Mao M, Luelsdorf A, De Abreu P, Ansenberger-Fricano K, Ekoue DN, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun 2015. https://doi.org/10.1038/ncomms7053.

Download references

Acknowledgements

We would like to thank all members of the Germain lab and of the Mount Sinai Flow Cytometry Core, Microscopy Core and Biorepository Core Facility. This study was supported by the NIH R01CA172046 to DG and the NIH supplement to MG. The core facilities used in this study are supported by P30 grant CA196521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Germain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, M.L., Shah, N., Kenny, T.C. et al. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 38, 5751–5765 (2019). https://doi.org/10.1038/s41388-019-0839-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0839-x

  • Springer Nature Limited

This article is cited by

Navigation