Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recent Developments in Tracking Objects in a Video Sequence

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9622))

Included in the following conference series:

  • 1660 Accesses

Abstract

Methods of tracking of multiple objects or people in video sequences have applications in many fields such as surveillance, art, transport or biology. This, over four decades old area is still very active, with multiple new contributions presented every year. Tracking methods must solve intricate problems, for example occlusion of many objects, crowded scenes, illumination of different places and motion of camera. This paper presents a brief survey of recent developments in video tracking based methods, focused mainly on the last three years. The surveyed methods are divided into two groups: tracking by detection, which includes methods that solve the problem of time-linking objects detected in all video frames, and tracking by correlation, containing methods that follow a selected object using cross correlation. The reviewed methods are collected in a table that lists for each method the benchmark datasets used for its evaluation, implementation environment, and whether it can track single or multiple objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A Survey of Appearance Models in Visual Object Tracking (2013). CoRR abs/1303.4803

  2. Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. Pat. An. Mach. Intel. 36, 1442–1468 (2013)

    Google Scholar 

  3. Wu, Y., Lim, J., Yang, M.-H.: Online Object Tracking: A Benchmark CVpPR 2013, pp. 2411–2418 (2013). http://visual-tracking.net

  4. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5), 564–577 (2003)

    Article  Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  6. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)

    Google Scholar 

  7. Avidan, S.: Support vector tracking. PAMI 26(8), 1064–1072 (2004)

    Article  Google Scholar 

  8. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)

    Google Scholar 

  9. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)

    Article  Google Scholar 

  10. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: parallel robust online simple tracking. In: CVPR (2010)

    Google Scholar 

  11. Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: ICCV (2009)

    Google Scholar 

  12. Ristani, E., Tomasi, C.: Tracking multiple people online and in real time. In: 12th Asian Conference on Computer Vision, pp. 444–459 (2014). https://www.cs.duke.edu/ristani/bip_tracker.html

    Google Scholar 

  13. Zamir, A.R., Dehghan, A., Shah, M.: GMCP-Tracker: global multi-object tracking using generalized minimum clique graphs. In: Proceedings of the 12th European Conference on Computer Vision, pp. 343–356 (2012). http://crcv.ucf.edu/projects/GMCP-Tracker/

  14. Dicle, C., Camps, O., Sznaier, M.: The Way They Move: Tracking Multiple Targets with Similar Appearance Computer Vision (ICCV) (2013). https://bitbucket.org/cdicle/smot

  15. Rossand, G., Soland, R.: A branch and bound algorithm for the generalized assignment problem. Math. Program. 8(1), 91–103 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ayazoglu, M., Sznaier, M., Camps, O.: Fast algorithms for structured robust principal component analysis. In: CVPR, pp. 1704–1711 (2012)

    Google Scholar 

  17. Park, H., Zhang, L., Rosen, J.: Low rank approximation of a hankel matrix by structured total least norm. BIT Numer. Math. 39(4), 757–779 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan, A., Assari, S., Shah, M.: GMMCP tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4091–4099 (2015). http://crcv.ucf.edu/projects/GMMCP-Tracker/

  19. Milan, A., Leal-Taixe, L., Schindler, K., Reid, I.: Joint tracking and segmentation of multiple targets CVPR (2015). https://bitbucket.org/amilan/segtracking

  20. Poiesi, F., Cavallaro, A.: Tracking multiple high-density homogeneous targets. IEEE Trans. Circ. Syst. Video Technol. 25, 623–637 (2015). http://www.eecs.qmul.ac.uk/andrea/thdt.html

    Article  Google Scholar 

  21. Bae, S.-H., Yoon, K.-J.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning CVPR, pp. 1218–1225 (2014). https://cvl.gist.ac.kr/project/cmot.html

  22. Kim, T.-K., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning sets and its applications. IJCV 91(2), 216–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Danelljan, M., Hager, G., Shahbaz, K., F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference (2014). http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html

  24. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  25. Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  26. Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  27. Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity based collaborative model. In: Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  28. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  29. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual tracking via dense spatio-temporal context learning. In: 13th European Conference, Zurich, pp. 127–141 (2014). http://www4.comp.polyu.edu.hk/cslzhang/STC/STC.htm

    Google Scholar 

  30. Henriques, J.F., Caseiro, R., Martins, P., Batista J.: High-Speed Tracking with Kernelized Correlation Filters, CoRR (2014). abs/1404.7584http://home.isr.uc.pt/henriques/circulant/

  31. Felzenszwalb, P., Girshick, R., McAllester, B., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  32. Ferryman, J.: Proceedings (pets 2009). Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2009)

    Google Scholar 

  33. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  34. Andriluka, M., Roth, S., Schiele, B.: People-tracking-bydetectionandpeople-detection-by-tracking. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  35. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: Computer Vision and Pattern Recognition (2008)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Centre for Research and Development (project UOD-DEM-1-183/001 “Intelligent video analysis system for behavior and event recognition in surveillance networks”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kulbacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staniszewski, M., Kloszczyk, M., Segen, J., Wereszczyński, K., Drabik, A., Kulbacki, M. (2016). Recent Developments in Tracking Objects in a Video Sequence. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49390-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49389-2

  • Online ISBN: 978-3-662-49390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics