Abstract
Methods of tracking of multiple objects or people in video sequences have applications in many fields such as surveillance, art, transport or biology. This, over four decades old area is still very active, with multiple new contributions presented every year. Tracking methods must solve intricate problems, for example occlusion of many objects, crowded scenes, illumination of different places and motion of camera. This paper presents a brief survey of recent developments in video tracking based methods, focused mainly on the last three years. The surveyed methods are divided into two groups: tracking by detection, which includes methods that solve the problem of time-linking objects detected in all video frames, and tracking by correlation, containing methods that follow a selected object using cross correlation. The reviewed methods are collected in a table that lists for each method the benchmark datasets used for its evaluation, implementation environment, and whether it can track single or multiple objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A Survey of Appearance Models in Visual Object Tracking (2013). CoRR abs/1303.4803
Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. Pat. An. Mach. Intel. 36, 1442–1468 (2013)
Wu, Y., Lim, J., Yang, M.-H.: Online Object Tracking: A Benchmark CVpPR 2013, pp. 2411–2418 (2013). http://visual-tracking.net
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. PAMI 25(5), 564–577 (2003)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)
Avidan, S.: Support vector tracking. PAMI 26(8), 1064–1072 (2004)
Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: PROST: parallel robust online simple tracking. In: CVPR (2010)
Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: ICCV (2009)
Ristani, E., Tomasi, C.: Tracking multiple people online and in real time. In: 12th Asian Conference on Computer Vision, pp. 444–459 (2014). https://www.cs.duke.edu/ristani/bip_tracker.html
Zamir, A.R., Dehghan, A., Shah, M.: GMCP-Tracker: global multi-object tracking using generalized minimum clique graphs. In: Proceedings of the 12th European Conference on Computer Vision, pp. 343–356 (2012). http://crcv.ucf.edu/projects/GMCP-Tracker/
Dicle, C., Camps, O., Sznaier, M.: The Way They Move: Tracking Multiple Targets with Similar Appearance Computer Vision (ICCV) (2013). https://bitbucket.org/cdicle/smot
Rossand, G., Soland, R.: A branch and bound algorithm for the generalized assignment problem. Math. Program. 8(1), 91–103 (1975)
Ayazoglu, M., Sznaier, M., Camps, O.: Fast algorithms for structured robust principal component analysis. In: CVPR, pp. 1704–1711 (2012)
Park, H., Zhang, L., Rosen, J.: Low rank approximation of a hankel matrix by structured total least norm. BIT Numer. Math. 39(4), 757–779 (1999)
Dehghan, A., Assari, S., Shah, M.: GMMCP tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4091–4099 (2015). http://crcv.ucf.edu/projects/GMMCP-Tracker/
Milan, A., Leal-Taixe, L., Schindler, K., Reid, I.: Joint tracking and segmentation of multiple targets CVPR (2015). https://bitbucket.org/amilan/segtracking
Poiesi, F., Cavallaro, A.: Tracking multiple high-density homogeneous targets. IEEE Trans. Circ. Syst. Video Technol. 25, 623–637 (2015). http://www.eecs.qmul.ac.uk/andrea/thdt.html
Bae, S.-H., Yoon, K.-J.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning CVPR, pp. 1218–1225 (2014). https://cvl.gist.ac.kr/project/cmot.html
Kim, T.-K., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning sets and its applications. IJCV 91(2), 216–232 (2011)
Danelljan, M., Hager, G., Shahbaz, K., F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference (2014). http://www.cvl.isy.liu.se/en/research/objrec/visualtracking/scalvistrack/index.html
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Computer Vision and Pattern Recognition (2010)
Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: Computer Vision and Pattern Recognition (2011)
Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: Computer Vision and Pattern Recognition (2012)
Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity based collaborative model. In: Computer Vision and Pattern Recognition (2012)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 886–893 (2005)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual tracking via dense spatio-temporal context learning. In: 13th European Conference, Zurich, pp. 127–141 (2014). http://www4.comp.polyu.edu.hk/cslzhang/STC/STC.htm
Henriques, J.F., Caseiro, R., Martins, P., Batista J.: High-Speed Tracking with Kernelized Correlation Filters, CoRR (2014). abs/1404.7584http://home.isr.uc.pt/henriques/circulant/
Felzenszwalb, P., Girshick, R., McAllester, B., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Ferryman, J.: Proceedings (pets 2009). Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2009)
Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: Computer Vision and Pattern Recognition (2011)
Andriluka, M., Roth, S., Schiele, B.: People-tracking-bydetectionandpeople-detection-by-tracking. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: Computer Vision and Pattern Recognition (2008)
Acknowledgments
This work has been supported by the National Centre for Research and Development (project UOD-DEM-1-183/001 “Intelligent video analysis system for behavior and event recognition in surveillance networks”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Staniszewski, M., Kloszczyk, M., Segen, J., Wereszczyński, K., Drabik, A., Kulbacki, M. (2016). Recent Developments in Tracking Objects in a Video Sequence. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_42
Download citation
DOI: https://doi.org/10.1007/978-3-662-49390-8_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49389-2
Online ISBN: 978-3-662-49390-8
eBook Packages: Computer ScienceComputer Science (R0)