Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation Performance of the (1+1) Evolutionary Algorithm for the Minimum Degree Spanning Tree Problem

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1917 Accesses

Abstract

Evolutionary algorithms (EAs) are stochastic heuristic algorithms which are often successfully used for solving many optimization problems. However, the rigorous theoretical analysis results on the behavior of EAs on combinatorial optimizations are comparatively scarce, especially for NP-hard optimization problems. In this paper, we theoretically investigate the approximation performance of the (1+1) EA, a simple version of EAs on the minimum degree spanning tree (MDST) problem which is a classical NP-hard optimization problem. We show that the (1+1) EA can obtain an approximate solution for the MDST problem with maximum degree at most \(O(\varDelta _{opt}+\log n)\) in expected polynomial runtime \(O(m^2n^3+m\log n)\), where \(\varDelta _{opt}\) is the maximal degree of the optimal spanning tree. It implies that EAs can obtain solutions with guaranteed performance on the MDST problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  2. Fürer, M., Raghavachari, B.: An NC approximation algorithm for the minimum degree spanning tree problem. In: Proceedings of the 28th Annual Allerton Conference on Communication, Control and Computing, pp. 274–281 (1990)

    Google Scholar 

  3. Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree to within one from the optimal degree. In: Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 317–324. ACM, USA (1992)

    Google Scholar 

  4. Ravi, R., Raghavachari, B., Klein, P.: Approximation through local optimality: designing networks with small degree. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 279–290. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Fürer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to within one of optimal. J. Algorithms 17, 409–423 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallagher, K., Sambridge, M.: Genetic algorithms: a powerful tool for large-scale non-linear optimization problems. Comput. Geosci. 20(7–8), 1229–1236 (1994)

    Article  Google Scholar 

  7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspective. Natural Computing Series. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  9. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Yu, Y., Yao, X., Zhou, Z.: On the approximation ability of evolutionary optimization with application to minimum set cover. Artif. Intell. 180–181, 20–33 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xia, X., Zhou, Y., Lai, X.: On the analysis of the (1+1) evolutionary algorithm for the maximum leaf spanning tree problem. Int. J. Comput. Math. 92(10), 2023–2035 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raidl, G.R., Julstrom, B.A.: Edge sets: an effective evolutionary coding of spanning tree. IEEE Trans. Evol. Comput. 7(3), 225–239 (2003)

    Article  Google Scholar 

  14. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. PP(99), 1 (2014). doi:10.1109/TEVC.2014.2378512

    Google Scholar 

  15. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  16. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436, 54–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61170081, 61472143), and Natural Science Foundation of Jiangxi Province of China (20151BAB217008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuren Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, X., Zhou, Y. (2015). Approximation Performance of the (1+1) Evolutionary Algorithm for the Minimum Degree Spanning Tree Problem. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics