Nothing Special   »   [go: up one dir, main page]

Skip to main content

The VC-Dimension of Visibility on the Boundary of a Simple Polygon

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

In this paper, we prove that the VC-Dimension of visibility on the boundary of a simple polygon is exactly 6. Our result is the first tight bound for any variant of the VC-Dimension problem regarding simple polygons. Our upper bound proof is based off several structural lemmas which may be of independent interest to researchers studying geometric visibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Orden, D., Ramos, P.: Decomposition of multiple coverings into more parts. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 302–310. Society for Industrial and Applied Mathematics, Philadelphia, PA (2009)

    Google Scholar 

  2. Aronov, B., Ezra, E., Sharir, M.: Small-size epsilon-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximations. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 294–304. ACM, New York (1993)

    Google Scholar 

  4. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom 14, 463 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. SIAM J. Comput. 32(1), 172–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gibson, M., Krohn, E., Wang, Q.: On the VC-dimension of visibility in monotone polygons. In: 26th Canadian Conference on Computational Geometry (CCCG) (2014)

    Google Scholar 

  7. Gilbers, A.: VC-dimension of perimeter visibility domains. Inf. Process. Lett. 114(12), 696–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. 47(1), 61–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC 1973, pp. 38–49. ACM, New York (1973)

    Google Scholar 

  10. King, J.: VC-dimension of visibility on terrains. In: CCCG (2008)

    Google Scholar 

  11. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 475–484. ACM, New York (1997)

    Google Scholar 

  13. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104(1), 1–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Varadarajan, K.R.: Epsilon nets and union complexity. In: Symposium on Computational Geometry, pp. 11–16 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gibson, M., Krohn, E., Wang, Q. (2015). The VC-Dimension of Visibility on the Boundary of a Simple Polygon. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics