Abstract
In this paper, we prove that the VC-Dimension of visibility on the boundary of a simple polygon is exactly 6. Our result is the first tight bound for any variant of the VC-Dimension problem regarding simple polygons. Our upper bound proof is based off several structural lemmas which may be of independent interest to researchers studying geometric visibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aloupis, G., Cardinal, J., Collette, S., Langerman, S., Orden, D., Ramos, P.: Decomposition of multiple coverings into more parts. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 302–310. Society for Industrial and Applied Mathematics, Philadelphia, PA (2009)
Aronov, B., Ezra, E., Sharir, M.: Small-size epsilon-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)
Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximations. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 294–304. ACM, New York (1993)
Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom 14, 463 (1995)
Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. SIAM J. Comput. 32(1), 172–195 (2003)
Gibson, M., Krohn, E., Wang, Q.: On the VC-dimension of visibility in monotone polygons. In: 26th Canadian Conference on Computational Geometry (CCCG) (2014)
Gilbers, A.: VC-dimension of perimeter visibility domains. Inf. Process. Lett. 114(12), 696–699 (2014)
Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. Comput. Geom. 47(1), 61–74 (2014)
Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC 1973, pp. 38–49. ACM, New York (1973)
King, J.: VC-dimension of visibility on terrains. In: CCCG (2008)
Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)
Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 475–484. ACM, New York (1997)
Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104(1), 1–16 (1998)
Varadarajan, K.R.: Epsilon nets and union complexity. In: Symposium on Computational Geometry, pp. 11–16 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gibson, M., Krohn, E., Wang, Q. (2015). The VC-Dimension of Visibility on the Boundary of a Simple Polygon. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_46
Download citation
DOI: https://doi.org/10.1007/978-3-662-48971-0_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48970-3
Online ISBN: 978-3-662-48971-0
eBook Packages: Computer ScienceComputer Science (R0)