Abstract
Binary code embedding methods can effectively compensate the quantization error of bag-of-words (BoW) model and remarkably improve the image search performance. However, the existing embedding schemes commonly generate binary code by projecting local feature from original feature space into a compact binary space. The spatial relationship between the local feature and its neighbors are ignored. In this paper, we proposed two light-weight binary code embedding schemes, named content similarity embedding (CSE) and scale similarity embedding (SSE), to better balance the image search performance and resource cost. Specially, the spatial distribution information for any local feature and its nearest neighbors are encoded into only several bits, which are used to verify the asserted matches of local features. The experimental results show that the proposed image search scheme achieves a better balance between image search performance and resource usage (i.e., time cost and memory usage).
Chapter PDF
Similar content being viewed by others
References
Wei, S.K., Zhao, Y., Zhu, C., Xu, C.S., Zhu, Z.F.: Frame Fusion for Video Copy Detection. IEEE Transactions on Circuits and Systems for Video Technology 21(1), January 2011
Yan, W.Q., Wang, J., Kankanhalli, M.S.: Automatic Video Logo Detection and Removal. Multimedia Systems 10(5), 379–391 (2005)
Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)
Wei, S.K., Xu, D., Li, X., Zhao, Y.: Joint Optimization Toward Effective and Efficient Image Search. IEEE Transactions on Cybernetics 43(6), December 2013
Lowe, D.G.: Distinctive Image Features from Scale Invariant Keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Bay, H., Tuytelaars, T., Gool, L.V.: Speeded-up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proc. IEEE Int. Conf. Comput. Vision, vol. 2, pp. 1470–1477 (2003)
Jegou, H., Douze, M., Schmid, C.: Product Quantization for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)
Zhang, S.L., Tian, Q., Huang, Q.M., Gao, W., Rui, Y.: Multi-order visual phrase for scalable image search. In: ICIMCS 2013, August 17–19, 2013
Ge, T.Z., He, K.M., Ke, Q.F., Sun, J.: Optimized Product Quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2014)
Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)
Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: ACM Multimedia, pp. 75–84 (2009)
Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual phrases. In: Proc. IEEE Conf. Compute. Vis. Pattern Recognit., pp. 809–816 (2011)
Zhou, W., Lu, Y., Li, H., Song, Y., Tian, Q.: Spatial coding for large scale partial-duplicate web image search. In: Proceedings of the ACM International Conference on Multimedia, pp. 511–520 (2010)
Ozkan, S., Esen, E., Akar, G.B.: Visual group binary signature for video copy detection. In: International Conference on Pattern Recognition (ICPR), August 2014
Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: CVPR (2006)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Zhao, Y., Wei, S., Zhu, Z. (2015). Light-Weight Spatial Distribution Embedding of Adjacent Features for Image Search. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds) Computer Vision. CCCV 2015. Communications in Computer and Information Science, vol 546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48558-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-662-48558-3_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48557-6
Online ISBN: 978-3-662-48558-3
eBook Packages: Computer ScienceComputer Science (R0)