Abstract
We give a new framework for obtaining signatures with a tight security reduction from standard hardness assumptions. Concretely, we show that any Chameleon Hash function can be transformed into a (binary) tree-based signature scheme with tight security. The transformation is in the standard model, i.e., it does not make use of any random oracle. For specific assumptions (such as RSA, Diffie-Hellman and Short Integer Solution (SIS)) we further manage to obtain a more efficient flat-tree construction. Our framework explains and generalizes most of the existing schemes as well as providing a generic means for constructing tight signature schemes based on arbitrary assumptions, which improves the standard Merkle tree transformation. Moreover, we obtain the first tightly secure signature scheme from the SIS assumption and several schemes based on Diffie-Hellman in the standard model.
Some of our signature schemes can (using known techniques) be combined with Groth-Sahai proof methodology to yield tightly secure and efficient simulation-sound NIZK proofs of knowledge and CCA-secure encryption in the multi-user/-challenge setting under classical assumptions.
Chapter PDF
Similar content being viewed by others
References
Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)
Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)
Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. Cryptology ePrint Archive, Report 2014/797 (2014)
Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new, efficient designs. Journal of Cryptology 27(4), 799–823 (October 2014)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993
Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)
Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)
Blazy, O., Kakvi, S., Kiltz, E., Pan. J.: Tightly-secure signatures from chameleon hash functions. Cryptology ePrint Archive, Report 2014/1021 (2014)
Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)
Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (April 2008)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilinear maps. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110. Springer, Heidelberg (2003)
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)
Catalano, D., Gennaro, R.: Cramer-damgård signatures revisited: Efficient flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 313–327. Springer, Heidelberg (2005)
Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013)
Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006)
Cramer, R., Damgård, I.B.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 173–185. Springer, Heidelberg (1996)
Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM CCS 1999, pp. 46–51. ACM Press, November 1999
Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)
Dwork, C., Naor, M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994)
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008
Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. Journal of Cryptology 20(4), 493–514 (October 2007)
Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (April 1988)
Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)
Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012)
Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666. Springer, Heidelberg (2011)
Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Heidelberg (2009)
Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009)
Katz, J.: Digital Signatures. Springer (2010)
Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society, February 2000
Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)
Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004
Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer, Heidelberg (2011)
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394. ACM Press, May 1990
Schäge, S.: Tight proofs for signature schemes without random oracles. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Heidelberg (2011)
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 International Association for Cryptologic Research
About this paper
Cite this paper
Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J. (2015). Tightly-Secure Signatures from Chameleon Hash Functions. In: Katz, J. (eds) Public-Key Cryptography -- PKC 2015. PKC 2015. Lecture Notes in Computer Science(), vol 9020. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46447-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-46447-2_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46446-5
Online ISBN: 978-3-662-46447-2
eBook Packages: Computer ScienceComputer Science (R0)