Nothing Special   »   [go: up one dir, main page]

Skip to main content

Decision Tree Learner in the Presence of Domain Knowledge

  • Conference paper
  • First Online:
The Semantic Web and Web Science (CSWS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 480))

Included in the following conference series:

Abstract

In the era of semantic web and big data, the need for machine learning algorithms able to exploit domain ontologies is undeniable. In the past, two divergent research lines were followed, but with background knowledge represented through domain ontologies, is now possible to develop new ontology-driven learning algorithms. In this paper, we propose a method that adds domain knowledge, represented in OWL 2, to a purely statistical decision tree learner. The new algorithm tries to find the best attributes to test in the decision tree, considering both existing attributes and new ones that can be inferred from the ontology. By exploring the set of axioms in the ontology, the algorithm is then able to determine in run-time the best level of abstraction for each attribute, infer new attributes and decide the ones to be used in the tree. Our experimental results show that our method produces smaller and more accurate trees even on data sets where all features are concrete, but specially on those where some features are only specified at higher levels of abstraction. We also show that our method performs substantially better than traditional decision tree classifiers in cases where only a small number of labeled instances are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Antunes, C.: D2PM: domain driven pattern mining. Technical report, Project report, Technical Report 1530, IST, Lisboa (2011)

    Google Scholar 

  3. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  4. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1), 285–297 (1998)

    Article  MATH  Google Scholar 

  5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  6. Bramer, M.: Using J-pruning to reduce overfitting in classification trees. Knowl.-Based Syst. 15(5), 301–308 (2002)

    Article  Google Scholar 

  7. Domingos, P., Kok, S., Poon, H., Richardson, M., Singla, P.: Unifying logical and statistical AI. In: AAAI (2006)

    Google Scholar 

  8. Dzeroski, S., Jacobs, N., Molina, M., Moure, C., Muggleton, S., Laer, W.V.: Detecting traffic problems with ILP. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 281–290. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004)

    Article  Google Scholar 

  10. Kazakov, Y., Krtzsch, M., Simančík, F.: The incredible ELK. J. Autom. Reasoning 53(1), 1–61 (2014). http://dx.doi.org/10.1007/s10817-013-9296-3

    Google Scholar 

  11. Lincoff, G., Nehring, C.: National Audubon Society Field Guide to North American Mushrooms. Knopf, New York (1997)

    Google Scholar 

  12. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  13. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: Owl 2 web ontology language: structural specification and functional-style syntax. W3C recommendation 27, 17 (2009)

    Google Scholar 

  14. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Núñez, M.: The use of background knowledge in decision tree induction. Mach. Learn. 6(3), 231–250 (1991)

    Google Scholar 

  16. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  17. Quinlan, J.R., Cameron-Jones, R.M.: Foil: a midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 1–20. Springer, Heidelberg (1993)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning, vol. 1. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Roberts, S., Jacobs, N., Muggleton, S., Broughton, J., et al.: A comparison of ILP and propositional systems on propositional traffic data. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 291–299. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Cogn. Model. 1, 213 (2002)

    Google Scholar 

  21. Srinivasan, A., King, R.D., Muggleton, S.: The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program. Trans. Knowl. Data Eng. (1999)

    Google Scholar 

  22. White, A.P., Liu, W.Z.: Technical note: Bias in information-based measures in decision tree induction. Mach. Learn. 15(3), 321–329 (1994)

    MATH  Google Scholar 

  23. Zhang, J., Kang, D.K., Silvescu, A., Honavar, V.: Learning accurate and concise naïve bayes classifiers from attribute value taxonomies and data. Knowl. Inf. Syst. 9(2), 157–179 (2006)

    Article  Google Scholar 

  24. Zhang, J., Silvescu, A., Honavar, V.G.: Ontology-driven induction of decision trees at multiple levels of abstraction. In: Koenig, S., Holte, R. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 316–323. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vieira, J., Antunes, C. (2014). Decision Tree Learner in the Presence of Domain Knowledge. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J. (eds) The Semantic Web and Web Science. CSWS 2014. Communications in Computer and Information Science, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45495-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45495-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45494-7

  • Online ISBN: 978-3-662-45495-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics