Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bisimulations Up-to: Beyond First-Order Transition Systems

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

Abstract

The bisimulation proof method can be enhanced by employing ‘bisimulations up-to’ techniques. A comprehensive theory of such enhancements has been developed for first-order (i.e., CCS-like) labelled transition systems (LTSs) and bisimilarity, based on the notion of compatible function for fixed-point theory.

We transport this theory onto languages whose bisimilarity and LTS go beyond those of first-order models. The approach consists in exhibiting fully abstract translations of the more sophisticated LTSs and bisimilarities onto the first-order ones. This allows us to reuse directly the large corpus of up-to techniques that are available on first-order LTSs. The only ingredient that has to be manually supplied is the compatibility of basic up-to techniques that are specific to the new languages. We investigate the method on the π-calculus, the λ-calculus, and a (call-by-value) λ-calculus with references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 12–26. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in Functional Programming, pp. 65–116. Addison-Wesley (1989)

    Google Scholar 

  3. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29, 737–760 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chaudhuri, K., Cimini, M., Miller, D.: Formalization of the bisimulation-up-to technique and its meta theory. Draft (2014)

    Google Scholar 

  5. Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in coinductive proof. In: POPL, pp. 193–206. ACM (2013)

    Google Scholar 

  7. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: LICS, pp. 56–66 (1999)

    Google Scholar 

  8. Koutavas, V., Hennessy, M.: First-order reasoning for higher-order concurrency. Computer Languages, Systems & Structures 38(3), 242–277 (2012)

    Article  MATH  Google Scholar 

  9. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimulation. Electr. Notes Theor. Comput. Sci. 276, 215–235 (2011)

    Article  MathSciNet  Google Scholar 

  10. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs. In: POPL 2006, pp. 141–152. ACM (2006)

    Google Scholar 

  11. Lassen, S.B.: Relational reasoning about contexts. In: Higher-order Operational Techniques in Semantics, pp. 91–135. Cambridge University Press (1998)

    Google Scholar 

  12. Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD thesis, Department of Computer Science, University of Aarhus (1998)

    Google Scholar 

  13. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. Electr. Notes Theor. Comput. Sci. 20, 346–374 (1999)

    Article  MathSciNet  Google Scholar 

  14. Lenisa, M.: Themes in Final Semantics. Ph.D. thesis, Universitá di Pisa (1998)

    Google Scholar 

  15. Madiot, J.-M., Pous, D., Sangiorgi, D.: Web appendix to this paper, http://hal.inria.fr/hal-00990859

  16. Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6), 961–1023 (2005)

    Article  MathSciNet  Google Scholar 

  17. Milner, R.: Communication and Concurrency. Prentice Hall (1989)

    Google Scholar 

  18. Pohjola, J.Å., Parrow, J.: Bisimulation up-to techniques for psi-calculi. Draft (2014)

    Google Scholar 

  19. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Advanced Topics in Bisimulation and Coinduction. Cambridge University Press (2012)

    Google Scholar 

  20. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

    Google Scholar 

  21. Sangiorgi, D.: On the bisimulation proof method. J. of MSCS 8, 447–479 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)

    Article  Google Scholar 

  23. Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge University Press (2001)

    Google Scholar 

  24. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theor. Comput. Sci. 375(1-3), 169–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. J. ACM 54(5) (2007)

    Google Scholar 

  26. Turner, N.D.: The polymorphic pi-calculus: Theory and Implementation. PhD thesis, Department of Computer Science, University of Edinburgh (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madiot, JM., Pous, D., Sangiorgi, D. (2014). Bisimulations Up-to: Beyond First-Order Transition Systems. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics