Abstract
The bisimulation proof method can be enhanced by employing ‘bisimulations up-to’ techniques. A comprehensive theory of such enhancements has been developed for first-order (i.e., CCS-like) labelled transition systems (LTSs) and bisimilarity, based on the notion of compatible function for fixed-point theory.
We transport this theory onto languages whose bisimilarity and LTS go beyond those of first-order models. The approach consists in exhibiting fully abstract translations of the more sophisticated LTSs and bisimilarities onto the first-order ones. This allows us to reuse directly the large corpus of up-to techniques that are available on first-order LTSs. The only ingredient that has to be manually supplied is the compatibility of basic up-to techniques that are specific to the new languages. We investigate the method on the π-calculus, the λ-calculus, and a (call-by-value) λ-calculus with references.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 12–26. Springer, Heidelberg (1998)
Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in Functional Programming, pp. 65–116. Addison-Wesley (1989)
Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29, 737–760 (1992)
Chaudhuri, K., Cimini, M., Miller, D.: Formalization of the bisimulation-up-to technique and its meta theory. Draft (2014)
Hirschkoff, D.: A full formalisation of pi-calculus theory in the calculus of constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)
Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in coinductive proof. In: POPL, pp. 193–206. ACM (2013)
Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: LICS, pp. 56–66 (1999)
Koutavas, V., Hennessy, M.: First-order reasoning for higher-order concurrency. Computer Languages, Systems & Structures 38(3), 242–277 (2012)
Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimulation. Electr. Notes Theor. Comput. Sci. 276, 215–235 (2011)
Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs. In: POPL 2006, pp. 141–152. ACM (2006)
Lassen, S.B.: Relational reasoning about contexts. In: Higher-order Operational Techniques in Semantics, pp. 91–135. Cambridge University Press (1998)
Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD thesis, Department of Computer Science, University of Aarhus (1998)
Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. Electr. Notes Theor. Comput. Sci. 20, 346–374 (1999)
Lenisa, M.: Themes in Final Semantics. Ph.D. thesis, Universitá di Pisa (1998)
Madiot, J.-M., Pous, D., Sangiorgi, D.: Web appendix to this paper, http://hal.inria.fr/hal-00990859
Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6), 961–1023 (2005)
Milner, R.: Communication and Concurrency. Prentice Hall (1989)
Pohjola, J.Å., Parrow, J.: Bisimulation up-to techniques for psi-calculi. Draft (2014)
Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: Advanced Topics in Bisimulation and Coinduction. Cambridge University Press (2012)
Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)
Sangiorgi, D.: On the bisimulation proof method. J. of MSCS 8, 447–479 (1998)
Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)
Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge University Press (2001)
Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. Theor. Comput. Sci. 375(1-3), 169–192 (2007)
Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. J. ACM 54(5) (2007)
Turner, N.D.: The polymorphic pi-calculus: Theory and Implementation. PhD thesis, Department of Computer Science, University of Edinburgh (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Madiot, JM., Pous, D., Sangiorgi, D. (2014). Bisimulations Up-to: Beyond First-Order Transition Systems. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-44584-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44583-9
Online ISBN: 978-3-662-44584-6
eBook Packages: Computer ScienceComputer Science (R0)