Abstract
Self-localisation, or the process of an autonomous agent determining its own position and orientation within some local environment, is a critical task in modern robotics. Although this task may be formally defined as a simple transformation between local and global coordinate systems, the process of accurately and efficiently determining this transformation is a complex task. This is particularly the case in an environment where localisation must be inferred entirely from noisy visual data, such as the RoboCup robot soccer competitions. Although many effective probabilistic filters exist for solving this task in its general form, pseudo-uniform belief distributions (such as those arising from course-grain observations) exhibit properties allowing for further performance improvement. This paper explores the RoboCup 2D Simulation League as one such scenario, approximating the artificially constrained noise models as uniform to derive an improved particle filter for self-localisation. The developed system is demonstrated to yield from 38.2 to 201.3% reduction in localisation error, which is further shown as corresponding with a 6.4% improvement in goal difference across approximately 750 games.
Chapter PDF
Similar content being viewed by others
References
Akiyama, H.: Agent2D Base Code (2010), http://www.rctools.sourceforge.jp
Bai, A., Zhang, H., Lu, G., Jiang, M., Chen, X.: Gliders2012 wrighteagle 2d soccer simulation team description 2012. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico (June 2012)
Budden, D., Fenn, S., Mendes, A., Chalup, S.: Evaluation of colour models for computer vision using cluster validation techniques. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 261–272. Springer, Heidelberg (2013)
Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 827–838. Springer, Heidelberg (2012)
Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup environment: A comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg (2001)
Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Murray, J., Noda, I., et al.: Robocup soccer server, Manual for Soccer Server Version 7 (2003)
Hill, F., Kelley, S.: Computer graphics: using openGL. Prentice Hall, Upper Saddle River (2001)
Noda, I., Stone, P.: The RoboCup Soccer Server and CMUnited Clients: Implemented Infrastructure for MAS Research. Autonomous Agents and Multi-Agent Systems 7(1-2), 101–120 (July-September)
Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders2012: Tactics with action-dependent evaluation functions (2012)
Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004)
Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003)
Russell, S., Norvig, P., Canny, J., Malik, J., Edwards, D.: Artificial intelligence: a modern approach, vol. 2. Prentice Hall, Englewood Cliffs (1995)
Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Budden, D., Prokopenko, M. (2014). Improved Particle Filtering for Pseudo-Uniform Belief Distributions in Robot Localisation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds) RoboCup 2013: Robot World Cup XVII. RoboCup 2013. Lecture Notes in Computer Science(), vol 8371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44468-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-662-44468-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44467-2
Online ISBN: 978-3-662-44468-9
eBook Packages: Computer ScienceComputer Science (R0)