Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time-to-Digital Converters

  • Chapter
  • First Online:
Design, Modeling and Testing of Data Converters

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Dynamic development in science and technology in the second half of the twentieth century caused, among others, an increase in the interest in methods and techniques for precise measurement of time interval that elapses between two physical events. The main objective of the meters which are used for such purposes is the creation of a numerical representation of the measured time interval with as high accuracy and precision as possible. Since the result of measurement is usually presented in digital form, this operation is called a time-to-digital (T/D) conversion, while measuring devices are universally called time-to-digital converters (TDCs). In this chapter, the most representative methods and techniques used for the measurement of time interval with high resolution and precision are described. This includes time stretching, time-to-amplitude followed by amplitude-to-digital conversion, the counting method, direct time-to-digital conversions with a digital delay line in the single and Vernier versions, as well as single- and two-stage interpolation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Napolitano, P., Moschitta, A., Carbone, P.: A survey on time interval measurement techniques and testing methods. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 181–186 (2010)

    Google Scholar 

  2. Henzler, S.: Time-to-Digital Converters. Springer, Heidelberg (2010), 123 pp

    Google Scholar 

  3. Kalisz, J.: Review of methods for time interval measurements with picosecond resolution. Metrologia 41, 35–51 (2004)

    Article  Google Scholar 

  4. IEEE standard for terminology and test methods for analog-to-digital converters, IEEE Std, 2001

    Google Scholar 

  5. Borremans, K., Vengattarmane, J., Craninkx, A.: 6fJ/step, 5.5 ps time-to-digital converter for a digital PLL in 40 nm digital LP CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 417–420 (2010)

    Google Scholar 

  6. Fundamentals of time interval measurements, Application Note 200-3, Hewlett-Packard, 1997

    Google Scholar 

  7. Nissinen, I., Mäntyniemi, A., Kostamovaara, J.: A CMOS time-to-digital converter based on a ring oscillator for a laser radar. In: Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC’2003), Estoril, Portugal, pp. 469–472 (2003)

    Google Scholar 

  8. Arai, Y.: A high-resolution time digitizer utilizing dual PLL circuits. Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 969–973 (2004)

    MathSciNet  Google Scholar 

  9. Tonietto, R., Zuffetti, E., Castello, R., Bietti, I.: A 3 MHZ bandwidth low noise RF all digital PLL with 12 ps resolution time to digital converter. In Proceedings 32nd ESSCIRC, pp. 150–153 (2006)

    Google Scholar 

  10. Rahkonen, T., Kostamovaara, J.: The use of stabilized CMOS delay lines in the digitization of short time intervals. IEEE J. Solid-State Circ. 28(8), 887–894 (1993)

    Article  Google Scholar 

  11. Mota, M., Christiansen, J., Debieux, S., Ryjov, V., Moreira, P., Marchioro, A.: A flexible multi-channel high-resolution time-to-digital converter ASIC. Nucl. Sci. Symp. Conf. Rec. 2, 9-155–9-159 (2000)

    Google Scholar 

  12. Jansson, J., Mäntyniemi, A., Kostamovaara, J.: CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid State Circ. 41(6), 1286–1296 (2006)

    Article  Google Scholar 

  13. Spencer, D., Cole, J., Drigert, M., Aryaeinejad, R.: A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements. Nucl. Instrum. Methods Phys. Res. A 556, 291–295 (2006)

    Article  Google Scholar 

  14. Szplet, R., Gołaszewski, M.: Integrated time-to-digital converter based on counting method and multiphase clock. Meas. Autom. Monitor. 58(8), 591–593 (2008)

    Google Scholar 

  15. Leskovar, B., Turko, B.: Optical timing receiver for the NASA spaceborne ranging system. Part II: High precision event-timing digitizer, Lawrence Berkeley Laboratory Report (1978)

    Google Scholar 

  16. Kalisz, J., Pawłowski, M., Pełka, R.: A method for autocalibration of the interpolation time interval digitiser with picosecond resolution. J. Phys. E: Sci. Instrum. 18, 444–452 (1985)

    Article  Google Scholar 

  17. Räisänen-Ruotsalainen, E., Rahkonen, T., Kostamovaara, J.: An integrated time-to-digital converter with 30-ps single-shot precision. IEEE J. Solid State Circ. 35(10), 1507–1510 (2000)

    Article  Google Scholar 

  18. Kalisz, J., Pawłowski, M., Pełka, R.: Error analysis and design of the Nutt time-interval digitiser with picosecond resolution. J. Phys. E: Sci. Instrum. 20, 1330–1341 (1987)

    Article  Google Scholar 

  19. Kalisz, J., Pełka, R., Poniecki, A.: Precision time counter for laser ranging to satellites. Rev. Sci. Instrum. 65, 736–741 (1994)

    Article  Google Scholar 

  20. Määttä, K., Kostamovaara, J.: High-precision time-to-digital converter for pulsed time-of-flight laser radar applications. IEEE Trans. Instrum. Meas. 47, 521–536 (1998)

    Article  Google Scholar 

  21. Keränen, P., Määttä, K., Kostamovaara, J.: Wide-range time-to-digital converter with 1-ps single-shot precision. IEEE Trans. Instrum. Meas. 60(9), 3162–3172 (2011)

    Article  Google Scholar 

  22. Aloisio, A., Branchini, P., Cicalese, R., Giordano, R., Izzo, V., Loffredo, S.: FPGA implementation of a high-resolution time-to-digital converter. In: IEEE Nuclear Science Symposium NSS ‘07, pp. 504–507 (2007)

    Google Scholar 

  23. Szplet, R., Kalisz, J., Jachna, Z.: A 45 ps time digitizer with two-phase clock and dual-edge two-stage interpolation in FPGA device. Meas. Sci. Technol. 20, 025108, 11 (2009)

    Google Scholar 

  24. Wu, J., Shi, Z.: The 10-ps wave union TDC: improving FPGA TDC resolution beyond its cell delay. IEEE Nucl. Sci. Symp. Conf. Rec. 3440–3446 (2008)

    Google Scholar 

  25. Wang, J., Liu, S., Zhao, L., Hu, X., An, Q.: The 10-ps multitime measurement averaging TDC implemented in an FPGA. IEEE Trans. Nucl. Sci. 58(4), 2011–2018 (2011)

    Google Scholar 

  26. Staszewski, R., Vemulapalli, S., Vallur, P., Wallberg, J., Balsara, P.: 1.3 V 20 ps time-to-digital converter for frequency synthesis in 90 nm CMOS. IEEE Trans. Circ. Syst-II: Express Briefs, pp. 1–5 (2005)

    Google Scholar 

  27. Elsayed, M., Dhanasekaran, V., Gambhir, M., Silva-Martinez, J., Sánchez-Sinencio, E.: A 0.8 ps DNL time-to-digital converter with 250 MHz event rate in 65 nm CMOS for time-mode_based ∑∆ modulator. IEEE J. Solid-State Circ. 46(9), 2084–2098 (2011)

    Article  Google Scholar 

  28. Henzler, S., Koeppe, S., Lorenz, D., Kamp, W., Kuenemund, R., Schmitt-Landsiedel, D.: A local passive time interpolation concept for variation-tolerant high-resolution time-to-digital conversion. IEEE J. Solid-State Circ. 43(7), 1666–1676 (2008)

    Article  Google Scholar 

  29. Yousif, A., Haslett, J.: A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)

    Article  Google Scholar 

  30. Kalisz, J., Szplet, R., Pasierbinski, J., Poniecki, A.: Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution. IEEE Trans. Instrum. Meas. 46, 51–55 (1997)

    Article  Google Scholar 

  31. Pełka, R., Kalisz, J., Szplet, R.: Nonlinearity correction of the integrated time-to-digital converter with direct coding. IEEE Trans. Instrum. Meas. 46(1), 449–453 (1997)

    Google Scholar 

  32. Zieliński, M., Chaberski, D., Kowalski, M., Frankowski, R., Grzelak, S.: High-resolution time-interval measuring system implemented in single FPGA device. Measurement 35, 311–317 (2004)

    Google Scholar 

  33. Daigneault, M., David, J.: A novel 10 ps resolution TDC architecture implemented in a 130 nm process FPGA. In: 8th IEEE International NEWCAS Conference, pp. 281–284 (2010)

    Google Scholar 

  34. Szplet, R., Jachna, Z., Kwiatkowski, P., Rozyc, K.: A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Meas. Sci. Technol. 24, 035904, 15 (2013)

    Google Scholar 

  35. Doenberg, J., Lee, H., Hodges, D.: Full-speed testing of A/D converters. IEEE J. Solid-State Circ. 19(6), 820–827 (1984)

    Article  Google Scholar 

  36. Mäntyniemi, A., Rahkonen, T., Kostamovaara, J.: A high resolution digital CMOS time-to-digital converter based on nested delay locked loops. In: Proceedings of the IEEE International Symposium Circuits and Systems ISCAS’99, vol. 2, pp. 537–540 (1999)

    Google Scholar 

  37. Mäntyniemi, A.: An integrated CMOS high precision time-to-digital converter based on stabilised three-stage delay line interpolation (2004) Acta Univ. Oul. C 210, Doctoral thesis. http://herkules.oulu.fi/isbn951427461X/

  38. Chen, P., Liu, S., Wu, J.: High accurate cyclic CMOS time-to-digital conversion with extremely low power consumption. Electron. Lett. 33(10), 858–860 (1997)

    Article  Google Scholar 

  39. Liu, Y., Vollenbruch, U., Chen, Y., Wicpalek, C., Maurer, L., Mayer, T., Boos, Z., Weigel, R.: A 6 ps resolution pulse shrinking time-to-digital converter as phase detector in multi-mode transceiver. In: IEEE Radio and Wireless Symposium, pp. 163–166 (2008)

    Google Scholar 

  40. Szplet, R., Klepacki, K.: An FPGA-integrated time-to-digital converter based on two-stage pulse shrinking. IEEE Trans. Instrum. Meas. 59(6), 1663–1670 (2010)

    Article  Google Scholar 

  41. Chen, P., Chen, C., Zheng, J., Shen, Y.: A PVT insensitive vernier-based time-to-digital converter with extended input range and high accuracy. IEEE Trans. Nucl. Sci. 54(2), 297 (2007)

    Google Scholar 

  42. Yu, J., Dai, F., Jaeger, R.: A 12-bit vernier ring time-to-digital converter in 0.13 μm CMOS technology. IEEE J. Solid-State Circ. 45(4), 830–842 (2010)

    Article  Google Scholar 

  43. Liscidini, A., Vercesi, L., Castello, R.: Time to digital converter based on a 2-dimensions Vernier architecture. In: IEEE Custom Integrated Circuits Conference, pp. 45–48 (2009)

    Google Scholar 

  44. Yu, J., Dai, F.: A 3-dimentional Vernier ring time-to-digital converter in 0.13 μm CMOS. In: IEEE Custom Integrated Circuits Conference, San Jose, USA, pp. 1–4 (2010)

    Google Scholar 

  45. Hsu, C., Straayer, M., Perrott, M.: A low-noise wide-BW 3.6-GHz digital ∆Σ fractional-N frequency synthesizer with a noise shaping time-to-digital converter and quantization noise cancellation. IEEE J. Solid-State Circ. 43(12), 2776–2786 (2008)

    Article  Google Scholar 

  46. Straayer, M., Perrott, M.: A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE J. Solid-State Circ. 44(4), 1089–1098 (2008)

    Article  Google Scholar 

  47. Mantyniemi, A., Rahkonen, T., Kostamovaara, J.: A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method. IEEE J. Solid-State Circ. 44(11), 3067–3078 (2009)

    Article  Google Scholar 

  48. Lee, M., Abidi, A.: A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE J. Solid-State Circ. 43(4), 769–777 (2008)

    Article  Google Scholar 

  49. Mandai, S., Charbon, E.: A 128-channel, 9 ps column-parallel two-stage TDC based on time difference amplification for time-resolved imaging, ESSCIRC, pp. 119–122 (2011)

    Google Scholar 

  50. Nissinen, I., Kostamovaara, J.: On-chip voltage reference-based time-to-digital converter for pulsed time-of-flight laser radar measurements. IEEE Trans. Instrum. Meas. 58(6), 1938–1948 (2009)

    Article  Google Scholar 

  51. Kalisz, J., Orżanowski, T., Szplet, R.: The delay-locked loop technique for temperature stabilization of internal delays of CMOS FPGA devices. Electron. Lett. 36(14), 1184–1185 (2000)

    Article  Google Scholar 

  52. Kinniment, D., Edwards, D.: Circuit technology in a large computer system. In: Proceedings of the Computers, Systems and Technology, pp. 441–450 (1972)

    Google Scholar 

  53. Ljuslin, C., Christiansen, J., Marchioro, A., Klingsheim, O.: An integrated 16-channel CMOS time to digital converter. IEEE Trans. Nucl. Sci. 41, 1104–1108 (1994)

    Article  Google Scholar 

  54. Szplet, R.: Auto-tuned counter synchronization in FPGA-based interpolation time digitizers. Electron. Lett. 45(13), 2 pp (2009)

    Google Scholar 

  55. Jansson, J., Mäntyniemi, A., Kostamovaara, J.: Synchronization in a multilevel CMOS time-to-digital converter. IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009)

    Article  Google Scholar 

  56. Mäntyniemi, A., Rahkonen, T., Kostamovaara, J.: A nonlinearity-corrected CMOS time digitizer IC with 20 ps single-shot precision. Proc. IEEE Int. Symp. Circ. Syst. 1, 513–516 (2002)

    Google Scholar 

  57. Kleinfelder, S., Majors, J., Blumer, K., Farr, W., Manor, B.: MTD132-a new subnanosecond multi-hit CMOS time-to-digital converter. IEEE Trans. Nucl. Sci. 38(2), 97–101 (1991)

    Article  Google Scholar 

  58. Wu, J.: Several key issues on implementing delay line based TDCs using FPGAs. FERMILAB-PUB-09-608-E, 6 pp

    Google Scholar 

  59. Amiri, A., Khouas, A., Boukadoum, M.: Pseudorandom stimuli generation for testing time-to-digital converters on an FPGA. IEEE Trans. Instrum. Meas. 58(7), 2209–2215 (2009)

    Article  Google Scholar 

  60. Toifl, T., Vari, R., Moreira, P., Marchioro, A.: 4-channel rad-hard delay generation ASIC with 1 ns timing resolution for LHC. IEEE Trans. Nucl. Sci. 46(3), 139–143 (1999)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish National Science Centre under contract no. DEC-2011/01/B/ST7/03278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Szplet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szplet, R. (2014). Time-to-Digital Converters. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39655-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39655-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39654-0

  • Online ISBN: 978-3-642-39655-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics