Abstract
Dynamic development in science and technology in the second half of the twentieth century caused, among others, an increase in the interest in methods and techniques for precise measurement of time interval that elapses between two physical events. The main objective of the meters which are used for such purposes is the creation of a numerical representation of the measured time interval with as high accuracy and precision as possible. Since the result of measurement is usually presented in digital form, this operation is called a time-to-digital (T/D) conversion, while measuring devices are universally called time-to-digital converters (TDCs). In this chapter, the most representative methods and techniques used for the measurement of time interval with high resolution and precision are described. This includes time stretching, time-to-amplitude followed by amplitude-to-digital conversion, the counting method, direct time-to-digital conversions with a digital delay line in the single and Vernier versions, as well as single- and two-stage interpolation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Napolitano, P., Moschitta, A., Carbone, P.: A survey on time interval measurement techniques and testing methods. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 181–186 (2010)
Henzler, S.: Time-to-Digital Converters. Springer, Heidelberg (2010), 123 pp
Kalisz, J.: Review of methods for time interval measurements with picosecond resolution. Metrologia 41, 35–51 (2004)
IEEE standard for terminology and test methods for analog-to-digital converters, IEEE Std, 2001
Borremans, K., Vengattarmane, J., Craninkx, A.: 6fJ/step, 5.5 ps time-to-digital converter for a digital PLL in 40 nm digital LP CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 417–420 (2010)
Fundamentals of time interval measurements, Application Note 200-3, Hewlett-Packard, 1997
Nissinen, I., Mäntyniemi, A., Kostamovaara, J.: A CMOS time-to-digital converter based on a ring oscillator for a laser radar. In: Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC’2003), Estoril, Portugal, pp. 469–472 (2003)
Arai, Y.: A high-resolution time digitizer utilizing dual PLL circuits. Proc. IEEE Nucl. Sci. Symp. Conf. Rec. 2, 969–973 (2004)
Tonietto, R., Zuffetti, E., Castello, R., Bietti, I.: A 3 MHZ bandwidth low noise RF all digital PLL with 12 ps resolution time to digital converter. In Proceedings 32nd ESSCIRC, pp. 150–153 (2006)
Rahkonen, T., Kostamovaara, J.: The use of stabilized CMOS delay lines in the digitization of short time intervals. IEEE J. Solid-State Circ. 28(8), 887–894 (1993)
Mota, M., Christiansen, J., Debieux, S., Ryjov, V., Moreira, P., Marchioro, A.: A flexible multi-channel high-resolution time-to-digital converter ASIC. Nucl. Sci. Symp. Conf. Rec. 2, 9-155–9-159 (2000)
Jansson, J., Mäntyniemi, A., Kostamovaara, J.: CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid State Circ. 41(6), 1286–1296 (2006)
Spencer, D., Cole, J., Drigert, M., Aryaeinejad, R.: A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements. Nucl. Instrum. Methods Phys. Res. A 556, 291–295 (2006)
Szplet, R., Gołaszewski, M.: Integrated time-to-digital converter based on counting method and multiphase clock. Meas. Autom. Monitor. 58(8), 591–593 (2008)
Leskovar, B., Turko, B.: Optical timing receiver for the NASA spaceborne ranging system. Part II: High precision event-timing digitizer, Lawrence Berkeley Laboratory Report (1978)
Kalisz, J., Pawłowski, M., Pełka, R.: A method for autocalibration of the interpolation time interval digitiser with picosecond resolution. J. Phys. E: Sci. Instrum. 18, 444–452 (1985)
Räisänen-Ruotsalainen, E., Rahkonen, T., Kostamovaara, J.: An integrated time-to-digital converter with 30-ps single-shot precision. IEEE J. Solid State Circ. 35(10), 1507–1510 (2000)
Kalisz, J., Pawłowski, M., Pełka, R.: Error analysis and design of the Nutt time-interval digitiser with picosecond resolution. J. Phys. E: Sci. Instrum. 20, 1330–1341 (1987)
Kalisz, J., Pełka, R., Poniecki, A.: Precision time counter for laser ranging to satellites. Rev. Sci. Instrum. 65, 736–741 (1994)
Määttä, K., Kostamovaara, J.: High-precision time-to-digital converter for pulsed time-of-flight laser radar applications. IEEE Trans. Instrum. Meas. 47, 521–536 (1998)
Keränen, P., Määttä, K., Kostamovaara, J.: Wide-range time-to-digital converter with 1-ps single-shot precision. IEEE Trans. Instrum. Meas. 60(9), 3162–3172 (2011)
Aloisio, A., Branchini, P., Cicalese, R., Giordano, R., Izzo, V., Loffredo, S.: FPGA implementation of a high-resolution time-to-digital converter. In: IEEE Nuclear Science Symposium NSS ‘07, pp. 504–507 (2007)
Szplet, R., Kalisz, J., Jachna, Z.: A 45 ps time digitizer with two-phase clock and dual-edge two-stage interpolation in FPGA device. Meas. Sci. Technol. 20, 025108, 11 (2009)
Wu, J., Shi, Z.: The 10-ps wave union TDC: improving FPGA TDC resolution beyond its cell delay. IEEE Nucl. Sci. Symp. Conf. Rec. 3440–3446 (2008)
Wang, J., Liu, S., Zhao, L., Hu, X., An, Q.: The 10-ps multitime measurement averaging TDC implemented in an FPGA. IEEE Trans. Nucl. Sci. 58(4), 2011–2018 (2011)
Staszewski, R., Vemulapalli, S., Vallur, P., Wallberg, J., Balsara, P.: 1.3 V 20 ps time-to-digital converter for frequency synthesis in 90 nm CMOS. IEEE Trans. Circ. Syst-II: Express Briefs, pp. 1–5 (2005)
Elsayed, M., Dhanasekaran, V., Gambhir, M., Silva-Martinez, J., Sánchez-Sinencio, E.: A 0.8 ps DNL time-to-digital converter with 250 MHz event rate in 65 nm CMOS for time-mode_based ∑∆ modulator. IEEE J. Solid-State Circ. 46(9), 2084–2098 (2011)
Henzler, S., Koeppe, S., Lorenz, D., Kamp, W., Kuenemund, R., Schmitt-Landsiedel, D.: A local passive time interpolation concept for variation-tolerant high-resolution time-to-digital conversion. IEEE J. Solid-State Circ. 43(7), 1666–1676 (2008)
Yousif, A., Haslett, J.: A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)
Kalisz, J., Szplet, R., Pasierbinski, J., Poniecki, A.: Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution. IEEE Trans. Instrum. Meas. 46, 51–55 (1997)
Pełka, R., Kalisz, J., Szplet, R.: Nonlinearity correction of the integrated time-to-digital converter with direct coding. IEEE Trans. Instrum. Meas. 46(1), 449–453 (1997)
Zieliński, M., Chaberski, D., Kowalski, M., Frankowski, R., Grzelak, S.: High-resolution time-interval measuring system implemented in single FPGA device. Measurement 35, 311–317 (2004)
Daigneault, M., David, J.: A novel 10 ps resolution TDC architecture implemented in a 130 nm process FPGA. In: 8th IEEE International NEWCAS Conference, pp. 281–284 (2010)
Szplet, R., Jachna, Z., Kwiatkowski, P., Rozyc, K.: A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Meas. Sci. Technol. 24, 035904, 15 (2013)
Doenberg, J., Lee, H., Hodges, D.: Full-speed testing of A/D converters. IEEE J. Solid-State Circ. 19(6), 820–827 (1984)
Mäntyniemi, A., Rahkonen, T., Kostamovaara, J.: A high resolution digital CMOS time-to-digital converter based on nested delay locked loops. In: Proceedings of the IEEE International Symposium Circuits and Systems ISCAS’99, vol. 2, pp. 537–540 (1999)
Mäntyniemi, A.: An integrated CMOS high precision time-to-digital converter based on stabilised three-stage delay line interpolation (2004) Acta Univ. Oul. C 210, Doctoral thesis. http://herkules.oulu.fi/isbn951427461X/
Chen, P., Liu, S., Wu, J.: High accurate cyclic CMOS time-to-digital conversion with extremely low power consumption. Electron. Lett. 33(10), 858–860 (1997)
Liu, Y., Vollenbruch, U., Chen, Y., Wicpalek, C., Maurer, L., Mayer, T., Boos, Z., Weigel, R.: A 6 ps resolution pulse shrinking time-to-digital converter as phase detector in multi-mode transceiver. In: IEEE Radio and Wireless Symposium, pp. 163–166 (2008)
Szplet, R., Klepacki, K.: An FPGA-integrated time-to-digital converter based on two-stage pulse shrinking. IEEE Trans. Instrum. Meas. 59(6), 1663–1670 (2010)
Chen, P., Chen, C., Zheng, J., Shen, Y.: A PVT insensitive vernier-based time-to-digital converter with extended input range and high accuracy. IEEE Trans. Nucl. Sci. 54(2), 297 (2007)
Yu, J., Dai, F., Jaeger, R.: A 12-bit vernier ring time-to-digital converter in 0.13 μm CMOS technology. IEEE J. Solid-State Circ. 45(4), 830–842 (2010)
Liscidini, A., Vercesi, L., Castello, R.: Time to digital converter based on a 2-dimensions Vernier architecture. In: IEEE Custom Integrated Circuits Conference, pp. 45–48 (2009)
Yu, J., Dai, F.: A 3-dimentional Vernier ring time-to-digital converter in 0.13 μm CMOS. In: IEEE Custom Integrated Circuits Conference, San Jose, USA, pp. 1–4 (2010)
Hsu, C., Straayer, M., Perrott, M.: A low-noise wide-BW 3.6-GHz digital ∆Σ fractional-N frequency synthesizer with a noise shaping time-to-digital converter and quantization noise cancellation. IEEE J. Solid-State Circ. 43(12), 2776–2786 (2008)
Straayer, M., Perrott, M.: A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE J. Solid-State Circ. 44(4), 1089–1098 (2008)
Mantyniemi, A., Rahkonen, T., Kostamovaara, J.: A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method. IEEE J. Solid-State Circ. 44(11), 3067–3078 (2009)
Lee, M., Abidi, A.: A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE J. Solid-State Circ. 43(4), 769–777 (2008)
Mandai, S., Charbon, E.: A 128-channel, 9 ps column-parallel two-stage TDC based on time difference amplification for time-resolved imaging, ESSCIRC, pp. 119–122 (2011)
Nissinen, I., Kostamovaara, J.: On-chip voltage reference-based time-to-digital converter for pulsed time-of-flight laser radar measurements. IEEE Trans. Instrum. Meas. 58(6), 1938–1948 (2009)
Kalisz, J., Orżanowski, T., Szplet, R.: The delay-locked loop technique for temperature stabilization of internal delays of CMOS FPGA devices. Electron. Lett. 36(14), 1184–1185 (2000)
Kinniment, D., Edwards, D.: Circuit technology in a large computer system. In: Proceedings of the Computers, Systems and Technology, pp. 441–450 (1972)
Ljuslin, C., Christiansen, J., Marchioro, A., Klingsheim, O.: An integrated 16-channel CMOS time to digital converter. IEEE Trans. Nucl. Sci. 41, 1104–1108 (1994)
Szplet, R.: Auto-tuned counter synchronization in FPGA-based interpolation time digitizers. Electron. Lett. 45(13), 2 pp (2009)
Jansson, J., Mäntyniemi, A., Kostamovaara, J.: Synchronization in a multilevel CMOS time-to-digital converter. IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009)
Mäntyniemi, A., Rahkonen, T., Kostamovaara, J.: A nonlinearity-corrected CMOS time digitizer IC with 20 ps single-shot precision. Proc. IEEE Int. Symp. Circ. Syst. 1, 513–516 (2002)
Kleinfelder, S., Majors, J., Blumer, K., Farr, W., Manor, B.: MTD132-a new subnanosecond multi-hit CMOS time-to-digital converter. IEEE Trans. Nucl. Sci. 38(2), 97–101 (1991)
Wu, J.: Several key issues on implementing delay line based TDCs using FPGAs. FERMILAB-PUB-09-608-E, 6 pp
Amiri, A., Khouas, A., Boukadoum, M.: Pseudorandom stimuli generation for testing time-to-digital converters on an FPGA. IEEE Trans. Instrum. Meas. 58(7), 2209–2215 (2009)
Toifl, T., Vari, R., Moreira, P., Marchioro, A.: 4-channel rad-hard delay generation ASIC with 1 ns timing resolution for LHC. IEEE Trans. Nucl. Sci. 46(3), 139–143 (1999)
Acknowledgment
This work was supported by the Polish National Science Centre under contract no. DEC-2011/01/B/ST7/03278.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Szplet, R. (2014). Time-to-Digital Converters. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39655-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-39655-7_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39654-0
Online ISBN: 978-3-642-39655-7
eBook Packages: EngineeringEngineering (R0)