Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reflection on the Popularity of MapReduce and Observation of Its Position in a Unified Big Data Platform

  • Conference paper
Web-Age Information Management (WAIM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7901))

Included in the following conference series:

Abstract

In recent years MapReduce has risen to be the de-facto tool for big data processing. MapReduce is a disruptive innovation. It has changed the landscape of database market, the landscape of technologies, as well as the landscape of saying power. The article will give a reflection on the popularity of the technique and some observations of its position in a unified big data platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Symposium on Operating Systems Design and Implementation (OSDI), pp. 137–150. USENIX Association, San Francisco (2004)

    Google Scholar 

  2. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with MapReduce: a survey. SIGMOD Record 40(4), 11–20 (2011)

    Article  Google Scholar 

  3. Sakr, S., Liu, A., Fayoumi, A.G.: The Family of MapReduce and Large Scale Data Processing Systems (2013), http://arxiv.org/abs/1302.2966

  4. Foley, M.J.: Microsoft drops Dryad; puts its big-data bets on Hadoop (2011), http://www.zdnet.com/blog/microsoft/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/11226

  5. Kraska, T.: Finding the Needle in the Big Data Systems Haystack. IEEE Internet Computing 17(1), 84–86 (2013)

    Article  Google Scholar 

  6. Winckler, M.: Apache Hadoop takes top prize at Media Guardian Innovation Awards (2011), http://www.guardian.co.uk/technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop

  7. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: Interactive Analysis of WebScale Datasets. Proceedings of the VLDB Endowment 3(1-2), 330–339 (2010)

    Google Scholar 

  8. He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems. In: International Conference on Data Engineering (ICDE), pp. 1199–1208. IEEE Computer Society, Hannover (2011)

    Google Scholar 

  9. Ferguson, M.: Architecting a Big Data Platform for Analytics. A Whitepaper Prepared for IBM (2012)

    Google Scholar 

  10. Oracle: Oracle: Big Data for the Enterprise. Oracle White Paper (2012)

    Google Scholar 

  11. Dewitt, D.: Polybase: What, Why, How. SQL PASS Summit Keynote (2012)

    Google Scholar 

  12. EMC: Unified Analytics Platform (2013), http://www.greenplum.com/products/greenplum-uap

  13. TeraData: TeraData Unified Data Architecture. TeraData Whitepaper (2012)

    Google Scholar 

  14. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A practical approach to self describing, polymorphic, and parallelizable user defined functions. Proceedings of the VLDB Endowment 2(2), 1402–1413 (2009)

    Google Scholar 

  15. Gates, A.: The Stinger Initiative: Making Apache Hive 100 Times Faster (2013), http://hortonworks.com/blog/100x-faster-hive/

  16. Incubator Wiki: Drill Proposal (2013), http://wiki.apache.org/incubator/DrillProposal

  17. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proceedings of the VLDB Endowment 2(1), 922–933 (2009)

    Google Scholar 

  18. Platfora: Platfora Homepage (2013), http://www.platfora.com/

  19. Murthy, A.C.: The Next Generation of Apache Hadoop MapReduce (2011), http://developer.yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-nextgen/

  20. BUSINESS WIRE: HortonWorks to Deliver Next-Generation of Apache Hadoop (2012), http://www.businesswire.com/news/home/20120119005825/en/Hortonworks-Deliver-Next-Generation-Apache-Hadoop

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, X., Qin, B., Du, X., Wang, S. (2013). Reflection on the Popularity of MapReduce and Observation of Its Position in a Unified Big Data Platform. In: Gao, Y., et al. Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39527-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39527-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39526-0

  • Online ISBN: 978-3-642-39527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics