Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient 3D Reconstruction for Urban Scenes

  • Conference paper
Intelligent Computing Theories (ICIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7995))

Included in the following conference series:

Abstract

Recently, researchers working in the fields of computer graphics and computer vision have shown tremendous interests in reconstructing urban scenes. For this task, the acquisition of the 3D point clouds is the first step, for which scans are usually widely utilized. Nevertheless, on seeing the potential drawbacks of scans, in this paper, we propose a novel urban scene reconstruction system based on the Multi-View Stereo (MVS). Given a set of calibrated photographs, we first generate point clouds using an existing MVS algorithm, and then reconstruct the sub-structures that often regularly repeat in urban buildings. Finally, we recover the entire architectural models through an automatic growing algorithm of the sub-structures in dominant directions. Experimental results on regular urban buildings show the practicality and high efficiency of the proposed reconstruction method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N.J., Cohen-Or, D., Chen, B.: Non-local Scan Consolidation for 3D Urban Scenes. ACM Transactions on Graphics 29, 94 (2010)

    Google Scholar 

  2. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., Chen, B.: SmartBoxes for Interactive Urban Reconstruction. ACM Transactions on Graphics 29, 93 (2010)

    Article  Google Scholar 

  3. Furukawa, Y., Ponce, J.: Accurate, dense, and robust Multi-View stereopsis. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  4. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Manhattan-world Stereo. In: CVPR, pp. 1422–1429 (2009)

    Google Scholar 

  5. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor Completion for Estimating Missing Values in Visual Data. In: ICCV, pp. 2114–2121 (2009)

    Google Scholar 

  6. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.J.: Discovering Structural Regularity in 3D Geometry. ACM Transactions on Graphics 27, 43 (2008)

    Article  Google Scholar 

  7. Coorg, S., Teller, S.: Extracting Textured Vertical Facades from Controlled Close-Range Imagery. In: CVPR, pp. 625–632 (1999)

    Google Scholar 

  8. Pollefeys, M., Nister, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P.: Detailed Real-Time Urban 3D Reconstruction from Video. In: IJCV 2008, pp. 143–167 (2008)

    Google Scholar 

  9. Werner, T., Zisserman, A.: New Techniques for Automated Architectural Reconstruction from Photographs. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 541–555. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum 26, 214–226 (2007)

    Article  Google Scholar 

  11. Mitra, N.J., Guibas, L.J., Pauly, M.: Partial And Approximate Symmetry Detection for 3D Geometry. ACM Transactions on Graphics 25, 560–568 (2006)

    Article  Google Scholar 

  12. Korah, T., Rasmussen, C.: Spatiotemporal Inpainting for Recovering Texture Maps of Occluded Building Facades. IEEE Transactions on Image Processing 16, 2262–2271 (2007)

    Article  MathSciNet  Google Scholar 

  13. Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.J.: Discovering Structural Regularity in 3D Geometry. ACM Transactions on Graphics 27, 43 (2008)

    Article  Google Scholar 

  14. Nan, L., Xie, K., Sharf, A.: A Search Classify Approach for Cluttered Indoor Scene Understanding. ACM Transactions on Graphics 31, 137 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, W., Zhang, L., Li, H., Zhang, X., Wu, D. (2013). Efficient 3D Reconstruction for Urban Scenes. In: Huang, DS., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds) Intelligent Computing Theories. ICIC 2013. Lecture Notes in Computer Science, vol 7995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39479-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39479-9_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39478-2

  • Online ISBN: 978-3-642-39479-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics