Abstract
We provide a new construction of a nondeterministic finite automaton (NFA) accepting the pushdown store language of a given pushdown automaton (PDA). The resulting NFA has a number of states which is quadratic in the number of states and linear in the number of pushdown symbols of the given PDA. Moreover, we prove the size optimality of our construction. Beside improving some results in the literature, our approach represents an alternative and more direct proof of pushdown store language regularity. Finally, we give a characterization of the class of pushdown store languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Handbook of Formal Languages, vol. 1, pp. 111–174. Springer (1997)
Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting subregular languages. Theor. Comput. Sci. 410, 3209–3222 (2009)
Büchi, J.R.: Regular canonical systems. Arch. Math. Logik Gr. 6, 91–111 (1964)
Chomsky, N.: Context-free grammars and pushdown storage. Quarterly Progress Report No. 65, Research Lab. Electonics. MIT, Cambridge, Massachusetts (1962)
Evey, J.: The theory and applications of pushdown store machines. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1963)
Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)
Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)
Greibach, S.A.: A note on pushdown store automata and regular systems. Proc. Amer. Math. Soc. 18, 263–268 (1967)
Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)
Holzer, M., Kutrib, M.: Descriptional complexity – an introductory survey. In: Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complexity of pushdown store languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 209–221. Springer, Heidelberg (2012)
Schützenberger, M.P.: On context-free languages and pushdown automata. Information and Control 6, 246–264 (1963)
Sun, C., Tang, L., Chen, Z.: Secure information flow in Java via reachability analysis of pushdown system. In: QSIC 2010, pp. 142–150. IEEE Computer Society (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geffert, V., Malcher, A., Meckel, K., Mereghetti, C., Palano, B. (2013). A Direct Construction of Finite State Automata for Pushdown Store Languages. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-39310-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39309-9
Online ISBN: 978-3-642-39310-5
eBook Packages: Computer ScienceComputer Science (R0)