Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Direct Construction of Finite State Automata for Pushdown Store Languages

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8031))

Included in the following conference series:

  • 463 Accesses

Abstract

We provide a new construction of a nondeterministic finite automaton (NFA) accepting the pushdown store language of a given pushdown automaton (PDA). The resulting NFA has a number of states which is quadratic in the number of states and linear in the number of pushdown symbols of the given PDA. Moreover, we prove the size optimality of our construction. Beside improving some results in the literature, our approach represents an alternative and more direct proof of pushdown store language regularity. Finally, we give a characterization of the class of pushdown store languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Handbook of Formal Languages, vol. 1, pp. 111–174. Springer (1997)

    Google Scholar 

  2. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting subregular languages. Theor. Comput. Sci. 410, 3209–3222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Büchi, J.R.: Regular canonical systems. Arch. Math. Logik Gr. 6, 91–111 (1964)

    Article  MATH  Google Scholar 

  4. Chomsky, N.: Context-free grammars and pushdown storage. Quarterly Progress Report No. 65, Research Lab. Electonics. MIT, Cambridge, Massachusetts (1962)

    Google Scholar 

  5. Evey, J.: The theory and applications of pushdown store machines. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1963)

    Google Scholar 

  6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  8. Greibach, S.A.: A note on pushdown store automata and regular systems. Proc. Amer. Math. Soc. 18, 263–268 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  10. Holzer, M., Kutrib, M.: Descriptional complexity – an introductory survey. In: Scientific Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

    Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  12. Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complexity of pushdown store languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 209–221. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Schützenberger, M.P.: On context-free languages and pushdown automata. Information and Control 6, 246–264 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, C., Tang, L., Chen, Z.: Secure information flow in Java via reachability analysis of pushdown system. In: QSIC 2010, pp. 142–150. IEEE Computer Society (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geffert, V., Malcher, A., Meckel, K., Mereghetti, C., Palano, B. (2013). A Direct Construction of Finite State Automata for Pushdown Store Languages. In: Jurgensen, H., Reis, R. (eds) Descriptional Complexity of Formal Systems. DCFS 2013. Lecture Notes in Computer Science, vol 8031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39310-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39310-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39309-9

  • Online ISBN: 978-3-642-39310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics