Nothing Special   »   [go: up one dir, main page]

Skip to main content

Size Lower Bounds for Quantum Automata

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7956))

Abstract

We compare the descriptional power of quantum finite automata with control language (qfcs) and deterministic finite automata (dfas). By suitably adapting Rabin’s technique, we show how to convert any given qfc to an equivalent dfa, incurring in an at most exponential size increase. This enables us to state a lower bound on the size of qfcs, which is logarithmic in the size of equivalent minimal dfas. In turn, this result yields analogous size lower bounds for several models of quantum finite automata in the literature.

Partially supported by MIUR under the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Th. Comp. Sys. 39, 165–188 (2006)

    Article  MATH  Google Scholar 

  2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. 39th Symp. Found. Comp. Sci., pp. 332–342 (1998)

    Google Scholar 

  3. Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112, 289–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing some regular languages. Theoretical Computer Science 340, 394–407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for analyzing quantum automata. Theoretical Computer Science 356, 14–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchi, M.P., Palano, B.: Events and languages on unary quantum automata. Fundamenta Informaticae 104, 1–15 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Comput. 5, 1456–1478 (2002)

    Article  MathSciNet  Google Scholar 

  9. Golovkins, M., Kravtsev, M.: Probabilistic reversible automata and quantum automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comp. Res. 1, 70–85 (2010)

    Article  Google Scholar 

  11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  12. Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge (1992)

    Google Scholar 

  13. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. 38th Annual Symposium on Foundations of Computer Science, pp. 66–75 (1997)

    Google Scholar 

  14. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mereghetti, C., Palano, B.: Quantum finite automata with control language. Theoretical Informatics and Applications 40, 315–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th Symposium on Foundations of Computer Science, pp. 369–376 (1999)

    Google Scholar 

  17. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)

    Article  MATH  Google Scholar 

  18. Scharnhorst, K.: Angles in complex vector spaces. Act. Ap. Math. 69, 95–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shilov, G.: Linear Algebra. Prentice Hall (1971); Reprinted by Dover (1977)

    Google Scholar 

  20. Yakaryilmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with small space bounds. Information & Computation 209, 873–892 (2011)

    Article  MATH  Google Scholar 

  21. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-way finite automata with quantum and classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bianchi, M.P., Mereghetti, C., Palano, B. (2013). Size Lower Bounds for Quantum Automata. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds) Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in Computer Science, vol 7956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39074-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39074-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39073-9

  • Online ISBN: 978-3-642-39074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics