Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stability Criteria for Uncertain Linear Systems with Time-Varying Delay

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7951))

Included in the following conference series:

  • 3829 Accesses

Abstract

This paper is concerned with the stability criteria for uncertain systems with time-varying delay. The parameter uncertainties are supposed to be norm-bounded. By using Lyapunov functional and integral inequality, some delay-dependent stability criteria are obtained. Numerical examples are given to demonstrate the effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jafarov, E.M.: Comparative analysis of simple improved delay-dependent stability criterions for linear time-delay systems: an augmented functional approach. In: American Control Conference, pp. 3389–3394 (2001)

    Google Scholar 

  2. Lin, C., Wang, Q.G., Lee, T.H.: A less conservative robust stability test for linear uncertain time-delay systems. IEEE Transactions on Automatic Control 51(1), 87–91 (2006)

    Article  MathSciNet  Google Scholar 

  3. He, Y., Wang, Q.G., Xie, L.H., Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Transactions on Automatic Control 52(2), 293–299 (2007)

    Article  MathSciNet  Google Scholar 

  4. Sarabi, F.E., Momeini, H.R.: Less Conservative delay-dependent robust stability criteria for linear time-delay systems. In: International Conference on Electronics Computer Telecommunications and Information Technology, pp. 738–741 (2010)

    Google Scholar 

  5. Ramakrishnan, K., Ray, G.: Robust stability criteria for uncertain linear systems with interval time-varying delay. J. Control Theory Appl. 9(4), 559–566 (2011)

    Article  MathSciNet  Google Scholar 

  6. Tang, M., Wang, Y.W., Wen, C.: Improved delay-range-dependent stability criteria for linear systems with interval time-varying delays. IET Control Theory Appl. 6(6), 868–873 (2002)

    Article  MathSciNet  Google Scholar 

  7. Teng, X.: Improved stability criterion for linear systems with-varying delay. In: 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 108–111 (2012)

    Google Scholar 

  8. Tian, E.A., Zhao, X., Wang, W.N.: Robust H  ∞  control for linear systems with delay in state or input. In: Chinese Control and Decision Conference, pp. 2046–2051 (2010)

    Google Scholar 

  9. Sun, J., Liu, G.P., Chen, J., Rees, D.: Improved stability criteria for linear systems with time-varying delay. IET Control Theory Appl. 4(4), 683–689 (2010)

    Article  MathSciNet  Google Scholar 

  10. Sun, J., Chen, J., Liu, G.P., Rees, D.: Delay-range-dependent and rate-range-dependent stability criteria for linear systems with time-varying delays. In: Joint 48th IEEE Conference on Decision and Control and 28th Control Conference, Shanghai, China, pp. 251–256 (2009)

    Google Scholar 

  11. Tan, M.C.: Exponential convergence behavior of fuzzy cellular neural networks with distributed delays and time-varying coefficients. International Journal of Bifurcation and Chaos 19(7), 2455–2462 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tan, M.C.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays. Neural Processing Letters 31(2), 147–157 (2010)

    Article  Google Scholar 

  13. Tan, M.C., Zhang, Y., Su, W.L.: Exponential stability analysis of neural networks with variable delays. International Journal of Bifurcation and Chaos 20(5), 1541–1549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X.M., Tang, X.H., Xiao, S.P.: New criteria on delay-dependent stability for linear systems with time delays. In: 27th Chinese Control Conference, pp. 43–47 (2008)

    Google Scholar 

  15. Lien, C.H.: Stability and stabilization criteria for a class of uncertain neutral systems with time-varying delays. J. Optimization Theory Appl. 124(3), 637–657 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, C., Tian, Y.C.: Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. IET Control Theory and Appl. 2(9), 752–761 (2008)

    Article  MathSciNet  Google Scholar 

  17. Zhang, A., Xu, Z.D., Liu, D.: New stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations. In: Chinese Control and Decision Conference, pp. 2995–2999 (2011)

    Google Scholar 

  18. Fridman, E., Shaked, U.: A descriptor systems approach to H  ∞  control of linear time-delay systems. IEEE Transaction on Automatic Control 47(2), 253–270 (2002)

    Article  MathSciNet  Google Scholar 

  19. Wu, M., He, Y., She, J., Liu, G.: Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40(8), 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, Y., Wang, Q., Lin, C., Wu, M.: Delay-range dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shao, H.Y.: New delay-dependent stability criteria for systems with interval delay. Automatica 45(3), 744–749 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, X.F., Liu, Q.L.: On H  ∞  control for linear systems with interval time-varying delay. Automatica 41(12), 2099–2106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, H., Tan, M., Xu, S. (2013). Stability Criteria for Uncertain Linear Systems with Time-Varying Delay. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics