Abstract
Over the last years there has been some interest in models that combine first-order logic and probabilistic graphical models to describe large scale domains, and in efficient ways to perform inference on these domains. Prolog Factor Language (PFL) is a extension of the Prolog language that allows a natural representation of these first-order probabilistic models (either directed or undirected). PFL is also capable of solving probabilistic queries on these models through the implementation of four inference algorithms: variable elimination, belief propagation, lifted variable elimination and lifted belief propagation. We show how these models can be easily represented using PFL and then we perform a comparative study between the different inference algorithms in four artificial problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)
De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)
Poole, D.: The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty. Artif. Intell. 94(1-2), 7–56 (1997)
Sato, T., Kameya, Y.: PRISM: A Language for Symbolic-Statistical Modeling. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 1997, Nagoya, Japan, August 23-29, vols. 2, pp. 1330–1339. Morgan Kaufmann (1997)
Sato, T., Kameya, Y.: New Advances in Logic-Based Probabilistic Modeling by PRISM. In: [2], pp. 118–155
Muggleton, S.: Stochastic Logic Programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming. Frontiers in Artificial Intelligence and Applications, vol. 32, pp. 254–264. IOS Press, Amsterdam (1996)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)
Santos Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint Logic Programming for Probabilistic Knowledge. In: Meek, C., Kjærulff, U. (eds.) Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, UAI 2003, Acapulco, Mexico, August 7-10, pp. 517–524. Morgan Kaufmann (2003)
Santos Costa, V., Page, D., Cussens, J.: CLP(BN): Constraint Logic Programming for Probabilistic Knowledge. In: [2], pp. 156–188
De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and Its Application in Link Discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, January 6-12, pp. 2462–2467 (2007)
Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. TPLP 11(2-3), 235–262 (2011)
Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for reasoning under uncertainty. TPLP 11(4-5), 433–449 (2011)
Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 985–991. Morgan Kaufmann (2003)
de Salvo Braz, R., Amir, E., Roth, D.: Lifted First-Order Probabilistic Inference. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 1319–1325. Professional Book Center (2005)
Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1094–1099 (2008)
Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 277–284. AUAI Press (2009)
Gogate, V., Domingos, P.: Probabilistic Theorem Proving. In: Cozman, F.G., Pfeffer, A. (eds.) Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2011, Barcelona, Spain, July 14-17, pp. 256–265. AUAI Press (2011)
Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted Probabilistic Inference by First-Order Knowledge Compilation. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22, pp. 2178–2185. IJCAI/AAAI (2011)
Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic Models with Unknown Objects. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, UK, July 30-August 5, pp. 1352–1359. Professional Book Center (2005)
Choi, J., Amir, E., Hill, D.J.: Lifted Inference for Relational Continuous Models. In: Grünwald, P., Spirtes, P. (eds.) Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2010, Catalina Island, CA, USA, July 8-11, pp. 126–134. AUAI Press (2010)
Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination with arbitrary constraints. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (2012)
Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning Probabilistic Relational Models. In: Relational Data Mining, pp. 307–335. Springer (2001)
Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Kaelbling, L.: Lifted probabilistic inference with counting formulas. In: Proc. 23rd AAAI, pp. 1062–1068 (2008)
Kersting, K., De Raedt, L.: Bayesian logic programs. CoRR cs.AI/0111058 (2001)
Santos Costa, V.: On the Implementation of the CLP(\(\mathcal BN\)) Language. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 234–248. Springer, Heidelberg (2010)
Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)
Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)
Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 467–475. Morgan Kaufmann Publishers Inc. (1999)
de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 433–451. MIT Press (2007)
Jha, A.K., Gogate, V., Meliou, A., Suciu, D.: Lifted Inference Seen from the Other Side: The Tractable Features. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) NIPS, pp. 973–981. Curran Associates, Inc. (2010)
Santos Costa, V., Damas, L., Rocha, R.: The YAP Prolog system. Theory and Practice of Logic Programming 12(Special Issue 1-2), 5–34 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gomes, T., Santos Costa, V. (2013). Evaluating Inference Algorithms for the Prolog Factor Language. In: Riguzzi, F., Železný, F. (eds) Inductive Logic Programming. ILP 2012. Lecture Notes in Computer Science(), vol 7842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38812-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-38812-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38811-8
Online ISBN: 978-3-642-38812-5
eBook Packages: Computer ScienceComputer Science (R0)