Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluating Inference Algorithms for the Prolog Factor Language

  • Conference paper
Inductive Logic Programming (ILP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7842))

Included in the following conference series:

  • 624 Accesses

Abstract

Over the last years there has been some interest in models that combine first-order logic and probabilistic graphical models to describe large scale domains, and in efficient ways to perform inference on these domains. Prolog Factor Language (PFL) is a extension of the Prolog language that allows a natural representation of these first-order probabilistic models (either directed or undirected). PFL is also capable of solving probabilistic queries on these models through the implementation of four inference algorithms: variable elimination, belief propagation, lifted variable elimination and lifted belief propagation. We show how these models can be easily represented using PFL and then we perform a comparative study between the different inference algorithms in four artificial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)

    Google Scholar 

  2. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Poole, D.: The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty. Artif. Intell. 94(1-2), 7–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sato, T., Kameya, Y.: PRISM: A Language for Symbolic-Statistical Modeling. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 1997, Nagoya, Japan, August 23-29, vols. 2, pp. 1330–1339. Morgan Kaufmann (1997)

    Google Scholar 

  5. Sato, T., Kameya, Y.: New Advances in Logic-Based Probabilistic Modeling by PRISM. In: [2], pp. 118–155

    Google Scholar 

  6. Muggleton, S.: Stochastic Logic Programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming. Frontiers in Artificial Intelligence and Applications, vol. 32, pp. 254–264. IOS Press, Amsterdam (1996)

    Google Scholar 

  7. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  8. Santos Costa, V., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint Logic Programming for Probabilistic Knowledge. In: Meek, C., Kjærulff, U. (eds.) Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, UAI 2003, Acapulco, Mexico, August 7-10, pp. 517–524. Morgan Kaufmann (2003)

    Google Scholar 

  9. Santos Costa, V., Page, D., Cussens, J.: CLP(BN): Constraint Logic Programming for Probabilistic Knowledge. In: [2], pp. 156–188

    Google Scholar 

  10. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A Probabilistic Prolog and Its Application in Link Discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, January 6-12, pp. 2462–2467 (2007)

    Google Scholar 

  11. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. TPLP 11(2-3), 235–262 (2011)

    MATH  Google Scholar 

  12. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for reasoning under uncertainty. TPLP 11(4-5), 433–449 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Poole, D.: First-order probabilistic inference. In: Gottlob, G., Walsh, T. (eds.) IJCAI, pp. 985–991. Morgan Kaufmann (2003)

    Google Scholar 

  14. de Salvo Braz, R., Amir, E., Roth, D.: Lifted First-Order Probabilistic Inference. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 1319–1325. Professional Book Center (2005)

    Google Scholar 

  15. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1094–1099 (2008)

    Google Scholar 

  16. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 277–284. AUAI Press (2009)

    Google Scholar 

  17. Gogate, V., Domingos, P.: Probabilistic Theorem Proving. In: Cozman, F.G., Pfeffer, A. (eds.) Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2011, Barcelona, Spain, July 14-17, pp. 256–265. AUAI Press (2011)

    Google Scholar 

  18. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted Probabilistic Inference by First-Order Knowledge Compilation. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22, pp. 2178–2185. IJCAI/AAAI (2011)

    Google Scholar 

  19. Milch, B., Marthi, B., Russell, S.J., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic Models with Unknown Objects. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, UK, July 30-August 5, pp. 1352–1359. Professional Book Center (2005)

    Google Scholar 

  20. Choi, J., Amir, E., Hill, D.J.: Lifted Inference for Relational Continuous Models. In: Grünwald, P., Spirtes, P. (eds.) Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2010, Catalina Island, CA, USA, July 8-11, pp. 126–134. AUAI Press (2010)

    Google Scholar 

  21. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination with arbitrary constraints. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (2012)

    Google Scholar 

  22. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning Probabilistic Relational Models. In: Relational Data Mining, pp. 307–335. Springer (2001)

    Google Scholar 

  23. Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Kaelbling, L.: Lifted probabilistic inference with counting formulas. In: Proc. 23rd AAAI, pp. 1062–1068 (2008)

    Google Scholar 

  24. Kersting, K., De Raedt, L.: Bayesian logic programs. CoRR cs.AI/0111058 (2001)

    Google Scholar 

  25. Santos Costa, V.: On the Implementation of the CLP(\(\mathcal BN\)) Language. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 234–248. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 467–475. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  29. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 433–451. MIT Press (2007)

    Google Scholar 

  30. Jha, A.K., Gogate, V., Meliou, A., Suciu, D.: Lifted Inference Seen from the Other Side: The Tractable Features. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) NIPS, pp. 973–981. Curran Associates, Inc. (2010)

    Google Scholar 

  31. Santos Costa, V., Damas, L., Rocha, R.: The YAP Prolog system. Theory and Practice of Logic Programming 12(Special Issue 1-2), 5–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, T., Santos Costa, V. (2013). Evaluating Inference Algorithms for the Prolog Factor Language. In: Riguzzi, F., Železný, F. (eds) Inductive Logic Programming. ILP 2012. Lecture Notes in Computer Science(), vol 7842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38812-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38812-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38811-8

  • Online ISBN: 978-3-642-38812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics