Abstract
We propose a face tracking method that is extremely fast and applicable to implementation on smart phones. An adaptive model is built to make the tracking robust with variety of situation such as scaling, pose changes, and abrupt movements. For dealing with the scaling and appearance changes, we incorporate the Lukas and Kanade’s optical flow and the CAMShift in which both color and corner point features are used to achieve the high accuracy. Based on the feature tracking, the model adapts with abrupt movements of tracked face and mobile camera by a failure detection method. The system then utilizes the particle filter and CAMShift to catch up the fast motion. Based on the tracked region, we detect the face in order to reinitialize the tracking process. The proposed method shows the high performance against the recent ones as well as achieving the realtime requirement on smart phones.
Chapter PDF
Similar content being viewed by others
References
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837 (2012)
Mei, X., Ling, H.: Robust visual tracking using ℓ1 minimization. In: ICCV, pp. 1436–1443 (2009)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)
Zhong, W., Lu, H., Yang, M.H.: Robust Object Tracking via Sparsity-based Collaborative Model. In: CVPR, pp. 1838–1845 (2012)
Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29(2), 261–271 (2007)
Nguyen, H.T., Smeulders, A.W.M.: Tracking aspects of the foreground against the background. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 446–456. Springer, Heidelberg (2004)
Kalal, Z., Matas, J., Mikolajczyk, K.: Online learning of robust object detectors during unstable tracking. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1417–1424 (2009)
Bradski, G.R.: Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel. Technology Journal 2(2), 13–27 (1998)
Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI 1981), pp. 674–679 (1981)
Sanjeev Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for OnlineNonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing, 174–188 (2002)
Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple. In: Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)
Pietikäinen, M., Zhao, G.: Local Texture Descriptors in Computer Vision (presentation). In: ICCV (2009)
Stolkin, R., Florescu, I., Kamberov, G.: An adaptive background model for camshift tracking with a moving camera. In: Proc. International Conference on Advances in Pattern Recognition, pp. 147–151 (2007)
Nickels, K., Hutchinson, S.: Estimating uncertainty in SSD-based feature tracking. IVC 20(1), 47–58 (2002)
Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental Learning for Robust Visual Tracking. The International Journal of Computer Vision, Special Issue: Learning for Vision (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vo, Q.N., Lee, G. (2013). A Feature-Based Adaptive Model for Realtime Face Tracking on Smart Phones. In: Kämäräinen, JK., Koskela, M. (eds) Image Analysis. SCIA 2013. Lecture Notes in Computer Science, vol 7944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38886-6_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-38886-6_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38885-9
Online ISBN: 978-3-642-38886-6
eBook Packages: Computer ScienceComputer Science (R0)