Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Multi-sensor System for Mobile Robot Localization

  • Conference paper
Natural and Artificial Computation in Engineering and Medical Applications (IWINAC 2013)

Abstract

In this paper, we propose a localization system that can combine data supplied by different sensors, even if they are not synchronized, or if they do not provide data at all times. Particularly, we have used the following sensors: a 2D laser range finder, a Wi-Fi positioning system (designed by us), and a magnetic compass. Real world experiments have shown that our algorithm is accurate, robust, and fast, and that it can take advantage of the strengths of each sensor, and minimise its weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez-Santos, V., Canedo-Rodriguez, A., Iglesias, R., Pardo, X.M., Regueiro, C.V.: Route learning and reproduction in a tour-guide robot. In: Ferrández, J.M., Álvarez, J.R., de la Paz, F., Javier Toledo, F. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 112–121. Springer, Heidelberg (2013)

    Google Scholar 

  2. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., et al.: Probabilistic algorithms and the interactive museum tour-guide robot minerva. International Journal of Robotics Research 19(11), 972–999 (2000)

    Article  Google Scholar 

  3. Tardós, J.D., Neira, J., Newman, P.M., Leonard, J.J.: Robust mapping and localization in indoor environments using sonar data. The International Journal of Robotics Research 21(4), 311–330 (2002)

    Article  Google Scholar 

  4. Gamallo, C., Regueiro, C., Quintía, P., Mucientes, M.: Omnivision-based kld-monte carlo localization. Robotics and Autonomous Systems 58(3), 295–305 (2010)

    Article  Google Scholar 

  5. Canedo-Rodriguez, A., Santos-Saavedra, D., Alvarez-Santos, V., Regueiro, C.V., Iglesias, R., Pardo, X.M.: Analysis of different localization systems suitable for a fast and easy deployment of robots in diverse environments. In: Workshop of Physical Agents, pp. 39–46 (2012)

    Google Scholar 

  6. Gutmann, J.-S., Fox, D.: An experimental comparison of localization methods continued. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 454–459. IEEE (2002)

    Google Scholar 

  7. Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Pollard, D.: A user’s guide to measure theoretic probability, vol. 8. Cambridge University Press (2001)

    Google Scholar 

  9. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27 (2011)

    Article  Google Scholar 

  10. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)

    Article  Google Scholar 

  11. Canedo-Rodriguez, A., Iglesias, R., Regueiro, C.V., Alvarez-Santos, V., Pardo, X.M.: Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments. Sensors 13(1), 426–454 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canedo-Rodriguez, A. et al. (2013). Robust Multi-sensor System for Mobile Robot Localization. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38622-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38621-3

  • Online ISBN: 978-3-642-38622-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics