Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Frequent Itemsets from Sparse Data Streams in Limited Memory Environments

  • Conference paper
Web-Age Information Management (WAIM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7923))

Included in the following conference series:

  • 3643 Accesses

Abstract

Floods of data can be produced in many applications such as Web click streams or wireless sensor networks. Hence, algorithms for mining frequent itemsets from data streams are in demand. Many existing stream mining algorithms capture important streaming data and assume that the captured data can fit into main memory. However, problem arose when the available memory so limited that such an assumption does not hold. In this paper, we present a data structure called DSTable to capture important data from the streams onto the disk. The DSTable can be easily maintained and is applicable for mining frequent itemsets from streams (especially sparse data) in limited memory environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  2. Buehrer, G., Parthasarathy, S., Ghoting, A.: Out-of-core frequent pattern mining on a commodity. In: ACM KDD 2006, pp. 86–95 (2006)

    Google Scholar 

  3. Cameron, J.J., Cuzzocrea, A., Leung, C.K.-S.: Stream mining of frequent sets with limited memory. In: ACM SAC 2013, pp. 173–175 (2013)

    Google Scholar 

  4. Cao, K., Wang, G., Han, D., Ma, Y., Ma, X.: A framework for high-quality clustering uncertain data stream over sliding windows. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 308–313. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Chiu, D.Y., Wu, Y.H., Chen, A.: Efficient frequent sequence mining by a dynamic strategy switching algorithm. VLDB J. 18(1), 303–327 (2009)

    Article  Google Scholar 

  6. Fariha, A., Ahmed, C.F., Leung, C.K.-S., Abdullah, S.M., Cao, L.: Mining frequent patterns from human interactions in meetings using directed acyclic graphs. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 38–49. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Gao, C., Wang, J., Yang, Q.: Efficient mining of closed sequential patterns on stream sliding window. In: IEEE ICDM 2011, pp. 1044–1049 (2011)

    Google Scholar 

  8. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data streams at multiple time granularities. In: Data Mining: Next Generation Challenges and Future Directions, ch. 6 (2004)

    Google Scholar 

  9. Grahne, G., Zhu, J.: Mining frequent itemsets from secondary memory. In: IEEE ICDM 2004, pp. 91–98 (2004)

    Google Scholar 

  10. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)

    Google Scholar 

  11. Jiang, X., Xiong, H., Wang, C., Tan, A.-H.: Mining globally distributed frequent subgraphs in a single labeled graph. DKE 68(10), 1034–1058 (2009)

    Article  Google Scholar 

  12. Jin, R., Agrawal, G.: An algorithm for in-core frequent itemset mining on streaming data. In: IEEE ICDM 2005, pp. 210–217 (2005)

    Google Scholar 

  13. Leung, C.K.-S., Brajczuk, D.A.: Efficient mining of frequent itemsets from data streams. In: Gray, A., Jeffery, K., Shao, J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp. 2–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncertain data streams with time-fading and landmark models. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds.) TLDKS VIII. LNCS, vol. 7790, pp. 174–196. Springer, Heidelberg (2013)

    Google Scholar 

  15. Leung, C.K.-S., Hayduk, Y.: Mining frequent patterns from uncertain data with mapReduce for big data analytics. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 440–455. Springer, Heidelberg (2013)

    Google Scholar 

  16. Leung, C.K.-S., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data streams. In: IEEE ICDM 2006, pp. 928–932 (2006)

    Google Scholar 

  17. Leung, C.K.-S., Tanbeer, S.K.: PUF-tree: a compact tree structure for frequent pattern mining of uncertain data. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 13–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Qu, J.-F., Liu, M.: A high-performance algorithm for frequent itemset mining. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 71–82. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketch-based querying of distributed sliding-window data streams. In: VLDB 2012, pp. 992–1003 (2012)

    Google Scholar 

  20. Tanbeer, S.K., Leung, C.K.-S.: Finding diverse friends in social networks. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 301–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Tirthapura, S., Woodruff, D.P.: A general method for estimating correlated aggregates over a data stream. In: IEEE ICDE 2012, pp. 162–173 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cameron, J.J., Cuzzocrea, A., Jiang, F., Leung, C.K. (2013). Mining Frequent Itemsets from Sparse Data Streams in Limited Memory Environments. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38562-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38561-2

  • Online ISBN: 978-3-642-38562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics