Abstract
Floods of data can be produced in many applications such as Web click streams or wireless sensor networks. Hence, algorithms for mining frequent itemsets from data streams are in demand. Many existing stream mining algorithms capture important streaming data and assume that the captured data can fit into main memory. However, problem arose when the available memory so limited that such an assumption does not hold. In this paper, we present a data structure called DSTable to capture important data from the streams onto the disk. The DSTable can be easily maintained and is applicable for mining frequent itemsets from streams (especially sparse data) in limited memory environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)
Buehrer, G., Parthasarathy, S., Ghoting, A.: Out-of-core frequent pattern mining on a commodity. In: ACM KDD 2006, pp. 86–95 (2006)
Cameron, J.J., Cuzzocrea, A., Leung, C.K.-S.: Stream mining of frequent sets with limited memory. In: ACM SAC 2013, pp. 173–175 (2013)
Cao, K., Wang, G., Han, D., Ma, Y., Ma, X.: A framework for high-quality clustering uncertain data stream over sliding windows. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 308–313. Springer, Heidelberg (2012)
Chiu, D.Y., Wu, Y.H., Chen, A.: Efficient frequent sequence mining by a dynamic strategy switching algorithm. VLDB J. 18(1), 303–327 (2009)
Fariha, A., Ahmed, C.F., Leung, C.K.-S., Abdullah, S.M., Cao, L.: Mining frequent patterns from human interactions in meetings using directed acyclic graphs. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 38–49. Springer, Heidelberg (2013)
Gao, C., Wang, J., Yang, Q.: Efficient mining of closed sequential patterns on stream sliding window. In: IEEE ICDM 2011, pp. 1044–1049 (2011)
Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining frequent patterns in data streams at multiple time granularities. In: Data Mining: Next Generation Challenges and Future Directions, ch. 6 (2004)
Grahne, G., Zhu, J.: Mining frequent itemsets from secondary memory. In: IEEE ICDM 2004, pp. 91–98 (2004)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)
Jiang, X., Xiong, H., Wang, C., Tan, A.-H.: Mining globally distributed frequent subgraphs in a single labeled graph. DKE 68(10), 1034–1058 (2009)
Jin, R., Agrawal, G.: An algorithm for in-core frequent itemset mining on streaming data. In: IEEE ICDM 2005, pp. 210–217 (2005)
Leung, C.K.-S., Brajczuk, D.A.: Efficient mining of frequent itemsets from data streams. In: Gray, A., Jeffery, K., Shao, J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp. 2–14. Springer, Heidelberg (2008)
Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncertain data streams with time-fading and landmark models. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds.) TLDKS VIII. LNCS, vol. 7790, pp. 174–196. Springer, Heidelberg (2013)
Leung, C.K.-S., Hayduk, Y.: Mining frequent patterns from uncertain data with mapReduce for big data analytics. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 440–455. Springer, Heidelberg (2013)
Leung, C.K.-S., Khan, Q.I.: DSTree: a tree structure for the mining of frequent sets from data streams. In: IEEE ICDM 2006, pp. 928–932 (2006)
Leung, C.K.-S., Tanbeer, S.K.: PUF-tree: a compact tree structure for frequent pattern mining of uncertain data. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 13–25. Springer, Heidelberg (2013)
Qu, J.-F., Liu, M.: A high-performance algorithm for frequent itemset mining. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 71–82. Springer, Heidelberg (2012)
Papapetrou, O., Garofalakis, M., Deligiannakis, A.: Sketch-based querying of distributed sliding-window data streams. In: VLDB 2012, pp. 992–1003 (2012)
Tanbeer, S.K., Leung, C.K.-S.: Finding diverse friends in social networks. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 301–309. Springer, Heidelberg (2013)
Tirthapura, S., Woodruff, D.P.: A general method for estimating correlated aggregates over a data stream. In: IEEE ICDE 2012, pp. 162–173 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cameron, J.J., Cuzzocrea, A., Jiang, F., Leung, C.K. (2013). Mining Frequent Itemsets from Sparse Data Streams in Limited Memory Environments. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-38562-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38561-2
Online ISBN: 978-3-642-38562-9
eBook Packages: Computer ScienceComputer Science (R0)