Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 76))

  • 1307 Accesses

Abstract

The Virtual Atomic and Molecular Data Centre (VAMDC) is a multinational project launched in July 2009 involving 24 research teams from several countries of the European Union (Austria, France, Germany, Italy, Sweden and the United Kingdom), Russia, Serbia and Venezuela. It intends to upgrade and integrate at least 21 atomic and molecular databases in order to implement an interoperable cyber-infrastructure for efficient data exchange in several user communities. In the present report we review the main features of data-intensive science (e-science), and within the context of the VAMDC, we discuss relevant concepts such as virtual databases; the deployment of database-centric applications as cloud web services; the workflow and script web-service integrators; data curation models; the social network as the new end user; the XSAMS XML schema and the structure of the VAMDC node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vamdc.eu/.

  2. 2.

    http://www.sdss.org/.

  3. 3.

    http://www.ivoa.net/.

  4. 4.

    http://www.python.org/.

  5. 5.

    http://www.taverna.org.uk/.

  6. 6.

    http://www.myexperiment.org/.

  7. 7.

    https://www.teragrid.org/.

  8. 8.

    http://www.egi.eu/.

  9. 9.

    http://www.gisela-grid.eu/.

  10. 10.

    http://www.garudaindia.in/.

  11. 11.

    http://www.echogrid.ercim.eu/.

  12. 12.

    https://www.xsede.org/.

  13. 13.

    http://plasma-gate.weizmann.ac.il/directories/databases/.

  14. 14.

    http://www-amdis.iaea.org/GENIE/.

  15. 15.

    http://opendocument.xml.org/.

  16. 16.

    http://www-amdis.iaea.org/xsams/.

  17. 17.

    http://www.vamdc.eu/documents/standards/dataModel/vamdcxsams/.

  18. 18.

    http://www.vamdc.org/documents/nodesoftware/.

  19. 19.

    http://dictionary.vamdc.org/.

  20. 20.

    http://www.ivoa.net/Documents/TAP/.

  21. 21.

    http://vamdc.org/documents/standards/dataAccessProtocol/.

  22. 22.

    http://vamdc.org/documents/standards/queryLanguage/.

  23. 23.

    http://www.astrogrid.org/maven/docs/HEAD/applications/.

  24. 24.

    http://soaplab.sourceforge.net/soaplab2/.

  25. 25.

    http://www.astro.uu.se/~vald/php/vald.php.

  26. 26.

    http://caoba.ivic.gob.ve:8180/soaplab2-axis/.

  27. 27.

    https://fedorahosted.org/suds/.

  28. 28.

    http://www.astro.uu.se/~vald/php/vald.php.

References

  1. The Opacity Project Team, The Opacity Project, vol. 1 (Institute of Physics Publications, Bristol, 1995)

    Google Scholar 

  2. D.G. Hummer, K.A. Berrington, W. Eissner, A.K. Pradhan, H.E. Saraph, J.A. Tully, Atomic data for the IRON Project. I. Goals and methods. Astron. Astrophys. 279, 298–309 (1993)

    ADS  Google Scholar 

  3. W. Cunto, C. Mendoza, The opacity project—the TOPbase atomic database. Rev. Mex. Astron. Astrofís. 23, 107–118 (1992)

    ADS  Google Scholar 

  4. W. Cunto, C. Mendoza, F. Ochsenbein, C.J. Zeippen, TOPbase at the CDS. Astron. Astrophys. 275, L5–L8 (1993)

    ADS  Google Scholar 

  5. C. Mendoza, M.J. Seaton, P. Buerger et al., OPserver: interactive online computations of opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 378, 1031–1035 (2007)

    Article  ADS  Google Scholar 

  6. T. Hey, A.E. Trefethen, Cyberinfrastructure for e-Science. Science 308, 817–821 (2005)

    Article  ADS  Google Scholar 

  7. C. Mendoza, L.A. Núñez, Virtual atomic and molecular data centre, in Proceedings of the First EELA-2 Conference, ed. by R. Mayo, H. Hoeger, H.E. Castro, L.N. Ciuffo, R. Barbera, I. Dutra, P. Gavillet, B. Marechal (CIEMAT, Madrid, 2009), pp. 219–225

    Google Scholar 

  8. M.L. Dubernet, V. Boudon, J.L. Culhane et al., Virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf. 111, 2151–2159 (2010)

    Article  ADS  Google Scholar 

  9. G. Bell, T. Hey, A. Szalay, Beyond the data deluge. Science 323, 1297–1298 (2009)

    Article  Google Scholar 

  10. T. Hey, S. Tansley, K. Tolle (eds.), The Fourth Paradigm: Data-Intensive Scientific Discovery (Microsoft Research, Redmond, 2009)

    Google Scholar 

  11. I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in Grid Computing Environments Workshop (GCE’08) (2008), pp. 60–69. doi:10.1109/GCE.2008.4738445

    Google Scholar 

  12. B.J. Braams (ed.), XSAMS: XML Schema for Atoms, Molecules and Solids, INDC(NDS)-0570 (International Atomic Energy Agency, Vienna, 2010)

    Google Scholar 

  13. J. Freire, M. Benedikt, Managing XML data: an abridged overview. Comput. Sci. Eng. 6, 12–19 (2004)

    Article  Google Scholar 

  14. K. Beyer, R. Cochrane, M. Hvizdos et al., DB2 goes hybrid: integrating native XML and XQuery with relational data and SQL. IBM Syst. J. 45, 271–298 (2006)

    Article  Google Scholar 

  15. S. Shankar, A. Kini, D.J. DeWitt, J. Naughton, Integrating databases and workflow systems. ACM SIGMOD Rec. 34, 5–11 (2005)

    Article  Google Scholar 

  16. C. Goble, D. De Roure, The impact of workflow tools on data-centric research, in The Fourth Paradigm: Data-Intensive Scientific Discovery, ed. by T. Hey, S. Tansley, K. Tolle (Microsoft Research, Redmond, 2009), pp. 137–145

    Google Scholar 

  17. I. Hubeny, A computer program for calculating non-LTE model stellar atmospheres. Comput. Phys. Commun. 52, 103–132 (1988)

    Article  ADS  Google Scholar 

  18. I. Hubeny, T. Lanz, Non-LTE line-blanketed model atmospheres of hot stars. I. Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995)

    Article  ADS  Google Scholar 

  19. T. Lanz, I. Hubeny, Atomic data in non-LTE model stellar atmospheres, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. ASP Conf. Ser., vol. 288, (2003), pp. 117–129

    Google Scholar 

  20. Y.L. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science. ACM SIGMOD Rec. 34, 31–36 (2005)

    Article  Google Scholar 

  21. M. Cannataro, C. Comito, A data mining ontology for grid programming, in Proceedings of the 1st International Workshop on Semantics in Peer-to-Peer and Grid Computing, in Conjunction with WWW2003, (2003), pp. 113–134

    Google Scholar 

  22. J. Blake, Bio-ontologies—fast and furious. Nat. Biotechnol. 22, 773–774 (2004)

    Article  Google Scholar 

  23. M.A. Bautista, T.R. Kallman, The XSTAR atomic database. Astrophys. J. Suppl. Ser. 134, 139–149 (2001)

    Article  ADS  Google Scholar 

  24. N.E. Piskunov, F. Kupka, T.A. Ryabchikova, W.W. Weiss, C.S. Jeffery, VALD: the Vienna atomic line data base. Astron. Astrophys. Suppl. Ser. 112, 525–535 (1995)

    ADS  Google Scholar 

  25. N.R. Badnell, A Breit–Pauli distorted wave implementation for AUTOSTRUCTURE. Comput. Phys. Commun. 182, 1528–1535 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Most of this paper was written at Woodcut, Richmond, UK, where the hospitality of Sasa Marinkov and Michael Jones was greatly appreciated. VAMDC is funded under the ‘Combination of Collaborative Projects and Coordination and Support Actions’ Funding Scheme of The Seventh Framework Program. Call topic: INFRA-2008-1.2.2 Scientific Data Infrastructure. Grant Agreement number: 239108. The Venezuelan node has been supported by Corporación Parque Tecnológico de Mérida, by EELA-2 (E-science grid facility for Europe and Latin America) and GISELA (Grid Initiatives for e-Science virtual communities in Europe and Latin America).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C. Mendoza .

Editor information

Editors and Affiliations

Appendices

Appendix A

XSAMS structure for the \({\rm 1s}\ ^{2}{\rm S}_{1/2}\) ground state of neutral hydrogen.

figure h

Appendix B

XSAMS structure for the transition \({\rm 2p}\ ^{2}{\rm P}^{o}_{1/2}\rightarrow {\rm 1s}\ ^{2}{\rm S}_{1/2}\) in hydrogen.

figure i

Appendix C

Python script for running the select3 Soaplab2 web service with a SUDS client. select3 is a tool associated with the VALDFootnote 28 atomic database [24].

figure j

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendoza, C., VAMDC Collaboration. (2013). Data-Intensive Profile for the VAMDC. In: Mohan, M. (eds) New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38167-6_18

Download citation

Publish with us

Policies and ethics