Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dimensionality Reduction with Dimension Selection

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7818))

Included in the following conference series:

Abstract

We propose a novel method called sparse dimensionality reduction (SDR) in this paper. It performs dimension selection while reducing data dimensionality. Different from traditional dimensionality reduction methods, this method does not require dimensionality estimation. The number of final dimensions is the outcome of the sparse component of this method. In a nutshell, the idea is to transform input data to a suitable space where redundant dimensions are compressible. The structure of this method is very flexible which accommodates a series of variants along this line. In this paper, the data transformation is carried out by Laplacian eigenmaps and the dimension selection is fulfilled by l2/l1 norm. A Nesterov algorithm is proposed to solve the approximated SDR objective function. Experiments have been conducted on images from video sequences and protein structure data. It is evident that the SDR algorithm has subspace learning capability and may be applied to computer vision applications potentially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  2. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)

    Article  Google Scholar 

  3. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space. SIAM Journal on Scientific Computing 26(1), 313–338 (2005)

    Article  MathSciNet  Google Scholar 

  4. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Jolliffe, M.: Principal Component Analysis. Springer, New York (1986)

    Book  Google Scholar 

  6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  7. Schölkopf, B., Smola, A.J., Müller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  8. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  9. Guo, Y., Gao, J., Kwan, P.W.H.: Kernel laplacian eigenmaps for visualization of non-vectorial data. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1179–1183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Guo, Y., Gao, J., Kwan, P.W.: Twin kernel embedding. IEEE Transaction of Pattern Analysis and Machine Intelligence 30(8), 1490–1495 (2008)

    Article  Google Scholar 

  11. Maillard, O.A., Munos, R.: Compressed least-squares regression. In: Advances in Neural Information Processing Systems 2011 (2011)

    Google Scholar 

  12. Farahmand, A.M., Szepesvári, C., Audibert, J.Y.: Manifold-adaptive dimension estimation. In: Proceedings of the 24th International Conference on Machine Learning (2007)

    Google Scholar 

  13. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of Royoal Statistical Society 1(58), 267–288 (1996)

    MathSciNet  Google Scholar 

  14. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1–22 (2010)

    Google Scholar 

  15. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geiger, A., Urtasun, R., Darrell, T.: Rank priors for continuous non-linear dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 880–887 (2009)

    Google Scholar 

  18. Gkioulekas, I., Zickler, T.: Dimensionality reduction using the sparse linear model. In: Advances in Neural Information Processing Systems 2011 (2011)

    Google Scholar 

  19. Saul, L.K., Weinberger, K.Q., Sha, F., Ham, J., Lee, D.D.: Spectral methods for dimensionality reduction. In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning. MIT Press, MA (2006)

    Google Scholar 

  20. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  Google Scholar 

  21. He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge (2004)

    Google Scholar 

  22. Guo, Y., Gao, J., Hong, X.: Constrained grouped sparsity. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 433–444. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  24. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  25. Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient l2,1-norm minimization. In: UAI, pp. 339–348 (2009)

    Google Scholar 

  26. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers (2003)

    Google Scholar 

  27. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)

    Article  Google Scholar 

  28. Qiu, J., Hue, M., Ben-Hur, A., Vert, J.P., Noble, W.S.: An alignment kernel for protein structures 23(9), 1090–1098 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Gao, J., Li, F. (2013). Dimensionality Reduction with Dimension Selection. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37453-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37452-4

  • Online ISBN: 978-3-642-37453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics