Abstract
We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detection rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hinterstoisser, S., Cagniart, C., Holzer, S., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Multimodal Templates for Real-Time Detection of Texture-Less Objects in Heavily Cluttered Scenes. In: ICCV (2011)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-Time Dense Surface Mapping and Tracking. In: ISMAR (2011)
Pan, Q., Reitmayr, G., Drummond, T.: ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition. In: BMVC (2009)
Weise, T., Wismer, T., Leibe, B., Gool, L.V.: In-hand Scanning with Online Loop Closure. In: International Workshop on 3-D Digital Imaging and Modeling (2009)
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense Tracking and Mapping in Real-Time. In: ICCV (2011)
Viola, P., Jones, M.: Fast Multi-View Face Detection. In: CVPR (2003)
Stark, M., Goesele, M., Schiele, B.: Back to the Future: Learning Shape Models from 3D Cad Data. In: BMVC (2010)
Liebelt, J., Schmid, C.: Multi-View Object Class Detection With a 3D Geometric Model. In: CVPR (2010)
Ferrari, V., Jurie, F., Schmid, C.: From Images to Shape Models for Object Detection. In: IJCV (2009)
Payet, N., Todorovic, S.: From contours to 3d object detection and pose estimation. In: ICCV, pp. 983–990 (2011)
Gavrila, D., Philomin, V.: Real-Time Object Detection for “smart” Vehicles. In: ICCV (1999)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing Images Using the Hausdorff Distance. TPAMI (1993)
Steger, C.: Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 148–154. Springer, Heidelberg (2001)
Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant Orientation Templates for Real-Time Detection of Texture-Less Objects. In: CVPR (2010)
Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic Correspondence for 3D Modeling: an Extensive Review. International Journal of Shape Modeling (2005)
Zhang, Z.: Iterative Point Matching for Registration of Free-Form Curves. In: IJCV (1994)
Johnson, A.E., Hebert, M.: Using Spin Images for Efficient Object Recognition in Cluttered 3 D Scenes. TPAMI (1999)
Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model Globally, Match Locally: Efficient and Robust 3D Object Recognition. In: CVPR (2010)
Mian, A.S., Bennamoun, M., Owens, R.: Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes. TPAMI (2006)
Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D Registration. In: International Conference on Robotics and Automation (2009)
Tombari, F., Salti, S., Di Stefano, L.: Unique Signatures of Histograms for Local Surface Description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)
Sun, M., Bradski, G., Xu, B.-X., Savarese, S.: Depth-Encoded Hough Voting for Joint Object Detection and Shape Recovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 658–671. Springer, Heidelberg (2010)
Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining rgb and depth information. In: ICRA, pp. 4007–4013 (2011)
Grabner, M., Grabner, H., Bischof, H.: Learning Features for Tracking. In: CVPR (2007)
Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Online Learning and Recognition. TPAMI (2010)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: CVPR (2010)
Hinterstoisser, S., Benhimane, S., Lepetit, V., Fua, P., Navab, N.: Simultaneous Recognition and Homography Extraction of Local Patches With a Simple Linear Classifier. In: BMVC (2008)
Fitzgibbon, A.: Robust Registration fo 2D and 3D Point Sets. In: BMVC (2001)
Hinterstoisser, S., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient Response Maps for Real-Time Detection of Texture-Less Objects. TPAMI (2012)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hinterstoisser, S. et al. (2013). Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-37331-2_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37330-5
Online ISBN: 978-3-642-37331-2
eBook Packages: Computer ScienceComputer Science (R0)