Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detection rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hinterstoisser, S., Cagniart, C., Holzer, S., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Multimodal Templates for Real-Time Detection of Texture-Less Objects in Heavily Cluttered Scenes. In: ICCV (2011)

    Google Scholar 

  2. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-Time Dense Surface Mapping and Tracking. In: ISMAR (2011)

    Google Scholar 

  3. Pan, Q., Reitmayr, G., Drummond, T.: ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition. In: BMVC (2009)

    Google Scholar 

  4. Weise, T., Wismer, T., Leibe, B., Gool, L.V.: In-hand Scanning with Online Loop Closure. In: International Workshop on 3-D Digital Imaging and Modeling (2009)

    Google Scholar 

  5. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense Tracking and Mapping in Real-Time. In: ICCV (2011)

    Google Scholar 

  6. Viola, P., Jones, M.: Fast Multi-View Face Detection. In: CVPR (2003)

    Google Scholar 

  7. Stark, M., Goesele, M., Schiele, B.: Back to the Future: Learning Shape Models from 3D Cad Data. In: BMVC (2010)

    Google Scholar 

  8. Liebelt, J., Schmid, C.: Multi-View Object Class Detection With a 3D Geometric Model. In: CVPR (2010)

    Google Scholar 

  9. Ferrari, V., Jurie, F., Schmid, C.: From Images to Shape Models for Object Detection. In: IJCV (2009)

    Google Scholar 

  10. Payet, N., Todorovic, S.: From contours to 3d object detection and pose estimation. In: ICCV, pp. 983–990 (2011)

    Google Scholar 

  11. Gavrila, D., Philomin, V.: Real-Time Object Detection for “smart” Vehicles. In: ICCV (1999)

    Google Scholar 

  12. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing Images Using the Hausdorff Distance. TPAMI (1993)

    Google Scholar 

  13. Steger, C.: Similarity Measures for Occlusion, Clutter, and Illumination Invariant Object Recognition. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 148–154. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant Orientation Templates for Real-Time Detection of Texture-Less Objects. In: CVPR (2010)

    Google Scholar 

  15. Mian, A.S., Bennamoun, M., Owens, R.A.: Automatic Correspondence for 3D Modeling: an Extensive Review. International Journal of Shape Modeling (2005)

    Google Scholar 

  16. Zhang, Z.: Iterative Point Matching for Registration of Free-Form Curves. In: IJCV (1994)

    Google Scholar 

  17. Johnson, A.E., Hebert, M.: Using Spin Images for Efficient Object Recognition in Cluttered 3 D Scenes. TPAMI (1999)

    Google Scholar 

  18. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model Globally, Match Locally: Efficient and Robust 3D Object Recognition. In: CVPR (2010)

    Google Scholar 

  19. Mian, A.S., Bennamoun, M., Owens, R.: Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes. TPAMI (2006)

    Google Scholar 

  20. Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D Registration. In: International Conference on Robotics and Automation (2009)

    Google Scholar 

  21. Tombari, F., Salti, S., Di Stefano, L.: Unique Signatures of Histograms for Local Surface Description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Sun, M., Bradski, G., Xu, B.-X., Savarese, S.: Depth-Encoded Hough Voting for Joint Object Detection and Shape Recovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 658–671. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining rgb and depth information. In: ICRA, pp. 4007–4013 (2011)

    Google Scholar 

  24. Grabner, M., Grabner, H., Bischof, H.: Learning Features for Tracking. In: CVPR (2007)

    Google Scholar 

  25. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Online Learning and Recognition. TPAMI (2010)

    Google Scholar 

  26. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: CVPR (2010)

    Google Scholar 

  27. Hinterstoisser, S., Benhimane, S., Lepetit, V., Fua, P., Navab, N.: Simultaneous Recognition and Homography Extraction of Local Patches With a Simple Linear Classifier. In: BMVC (2008)

    Google Scholar 

  28. Fitzgibbon, A.: Robust Registration fo 2D and 3D Point Sets. In: BMVC (2001)

    Google Scholar 

  29. Hinterstoisser, S., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient Response Maps for Real-Time Detection of Texture-Less Objects. TPAMI (2012)

    Google Scholar 

  30. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinterstoisser, S. et al. (2013). Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics