Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Hierarchical Bag of Words Using Naive Bayes Clustering

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

Image analysis tasks such as classification, clustering, detection, and retrieval are only as good as the feature representation of the images they use. Much research in computer vision is focused on finding better or semantically richer image representations. Bag of visual Words (BoW) is a representation that has emerged as an effective one for a variety of computer vision tasks. BoW methods traditionally use low level features. We have devised a strategy to use these low level features to create ‘‘higher level’’ features by making use of the spatial context in images. In this paper, we propose a novel hierarchical feature learning framework that uses a Naive Bayes Clustering algorithm to convert a 2-D symbolic image at one level to a 2-D symbolic image at the next level with richer features. On two popular datasets, Pascal VOC 2007 and Caltech 101, we empirically show that classification accuracy obtained from the hierarchical features computed using our approach is significantly higher than the traditional SIFT based BoW representation of images even though our image representations are more compact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  2. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV (2004)

    Google Scholar 

  3. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In: CVPR (2010)

    Google Scholar 

  4. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel Codebooks for Scene Categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)

    Google Scholar 

  7. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-Vector Coding of Local Image Descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)

    Google Scholar 

  9. Hinton, G.E., Osindero, S., Whye Teh, Y.: A fast learning algorithm for deep belief nets. In: Neural Computation (2006)

    Google Scholar 

  10. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE, 2278–2324 (1998)

    Google Scholar 

  11. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)

    Google Scholar 

  12. Riesenhuber, M., Poggio, T., Studies, E.: Hierarchical models of object recognition in cortex (1999)

    Google Scholar 

  13. Fergus, R., Yu, K., Ranzato, M.A., Lee, H., Salakhutdinov, R., Taylor, G.: Tutorial on deep learning methods for vision. In: CVPR 2012 Tutorial (2012), http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

  14. Agarwal, A., Triggs, B.: Multilevel image coding with hyperfeatures. International Journal of Computer Vision (2008)

    Google Scholar 

  15. Quack, T., Ferrari, V., Leibe, B., Gool, L.V.: Efficient mining of frequent and distinctive feature configurations (2007)

    Google Scholar 

  16. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: WGMBV (2004)

    Google Scholar 

  17. Lazebnik, S., Schmid, C., Ponce, J.: A maximum entropy framework for part-based texture and object recognition. In: ICCV (2005)

    Google Scholar 

  18. Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: ICCV (2005)

    Google Scholar 

  19. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: ICCV (2005)

    Google Scholar 

  20. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)

    Google Scholar 

  21. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)

    Google Scholar 

  22. lan Boreau, Y., Bach, F., Lecun, Y., Ponce, J.: Learning mid-level features for recognition (2010)

    Google Scholar 

  23. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics (2007)

    Google Scholar 

  24. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: SODA (2007)

    Google Scholar 

  25. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandra, S., Kumar, S., Jawahar, C.V. (2013). Learning Hierarchical Bag of Words Using Naive Bayes Clustering. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics