Nothing Special   »   [go: up one dir, main page]

Skip to main content

Markerless Tracking Algorithm Based on 3D Model for Augmented Reality System

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

  • 2589 Accesses

Abstract

We present a markerless augmented reality(AR) system based on 3D model. First, the feature of environment was extracted using SIFT operator, then the method of stratified reconstruction was used to reconstruct the 3D scene, after that we constructed the database of prior knowledge using the KD-Tree. Finally, we tracked the 3D model based on these prior knowledge via feature matching and pose estimation in real time. Experimental results demonstrated that this method is sufficient for markerless tracking registration. With the prior knowledge, key frame selection problem can be avoided and the running speed is also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azuma, R., et al.: Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications 12(11), 34–47 (2001)

    Article  MathSciNet  Google Scholar 

  2. Azuma, R.: A Survey of Augmented Reality. Teleoperators and Virtual Environments 4(6), 355–385 (1997)

    Google Scholar 

  3. ARToolKit, http://www.hitl.washington.edu/research/sharedspace/download/

  4. Lepetit, V., Fua, P.: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey. Foundations and Trends in Computer Graphics and Vision 1(1), 1–89 (2005)

    Article  Google Scholar 

  5. Simon, G., Berger, M.-O.: Pose estimation from planar structures. Computer Graphics and Applications 22, 46–53 (2002)

    Article  Google Scholar 

  6. Chia, K., Cheok, A., Prince, S.: Online 6DOF Augmented Reality Registration from Natural Features. In: Proc. ISMAR 2002 (2002)

    Google Scholar 

  7. Klein, G., Drummond, T.: Robust Visual Tracking for Non-Instrumented Augmented Reality. In: Proc. Second IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2003), Tokyo (2003)

    Google Scholar 

  8. Chen, J., Wang, Y., Li, Y., Hu, W., Zang, X.: Real-time Augmented Reality Registration Algorithm Based on Natural Feature Points. Journal of System Simulation 19 (November 2007)

    Google Scholar 

  9. Gordon, I., Lowe, D.G.: What and Where: 3D Object Recognition with Accurate Pose. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 67–82. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Vacchetti, L., Lepetit, V., Fua, P.: Stable Real-time 3D Tracking Using Online and Offline Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1385–1391 (2004)

    Article  Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc.of the International Conference on Computer Vision ICCV, Corfu, pp. 1150–1157 (1999)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  13. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings CVPR 1997, San Juan, Puerto Rico, pp. 1000–1006 (June 1997)

    Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)

    Google Scholar 

  15. Hampel, F., et al.: Robust Statistics: The Approach Based on Influence Functions. John Wiley, s.l (1986)

    MATH  Google Scholar 

  16. Pollefeys, M.: Self-calibration and metric 3D reconstruction from uncalibrated image sequences. Ph.D thesis, Katholieke Universiteit Leuven (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, P., Chen, C., Weng, D. (2013). Markerless Tracking Algorithm Based on 3D Model for Augmented Reality System. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics