Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model-Based Reasoning for Self-Adaptive Systems – Theory and Practice

  • Chapter
Assurances for Self-Adaptive Systems

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7740))

Abstract

Internal faults but also external events, or misinterpretations of sensor inputs as well as failing actuator actions make developing dependable systems a demanding task. This holds especially in the case where systems heavily interact with their environment. Even in case that the most common faults can be handled, it is very unlikely to capture all possible faults or interaction patterns at development time. As a consequence self-adaptive systems that respond to certain unexpected actions and observations at runtime are required. A pre-requisite for such system behavior is that the system itself has knowledge about itself and its objectives, which can be used for adapting its behavior autonomously. In order to provide a methodology for such systems we propose the use of model-based reasoning as foundation for adaptive systems. Besides lying out the basic principles, which allow for assurance of correctness and completeness of the reasoning results with respect to the underlying system model, we show how these techniques can be used to build self-adaptive mobile robots. In particular the proposed methodology relies on model-based diagnosis in combination with planning. We also discuss modeling issues and show how modeling paradigms influences the outcome of model-based reasoning. Moreover, we introduce some case studies of self-adaptive systems that rely on model-based reasoning concepts in order to show their applicability in practice. The case studies include mobile robots that react on hardware and software failures by applying corrective actions like restarting subsystems or reconfiguration of system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brooks, R.: Cambrian Intelligence. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Pill, I., Quaritsch, T., Wotawa, F.: From Conflicts to Diagnoses: An Empirical Evaluation of Minimal Hitting Set Algorithms. In: Proceedings of the 2nd International Workshop on Principles of Diagnosis (DX 2011), Murnau, Germany (October 2011)

    Google Scholar 

  3. Struss, P., Price, C.: Model-based systems in the automotive industry. AI Mag. 24(4), 17–34 (2004)

    Google Scholar 

  4. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots. MIT Press (1998)

    Google Scholar 

  5. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007 Future of Software Engineering, FOSE 2007, pp. 259–268. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  6. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  7. Lussier, B., Lampe, A., Chatila, R., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.: Fault Tolerance in Autonomous Systems: How and How Much? In: 4th IARP - IEEE/RAS - EURON Joint Workshop on Technical Challenges for Dependable Robots in Human Environments, Nagoya, Japan (2005)

    Google Scholar 

  8. Steinbauer, G.: A Survey about Faults of Robots used in RoboCup. In: Chen, X., Stone, P., Sucar, L.E., der Zant, T.V. (eds.) RoboCup-2012: Robot Soccer World Cup XVI. LNCS (LNAI). Springer, Berlin (2013)

    Google Scholar 

  9. Cascio, F., Console, L., Guagliumi, M., Osella, M., Panati, A., Sottano, S., Dupré, D.T.: Generating on-board diagnostics of dynamic automotive systems based on qualitative models. AI Communications 12(1/2) (1999)

    Google Scholar 

  10. Malik, A., Struss, P., Sachenbacher, M.: Case studies in model-based diagnosis and fault analysis of car-subsystems. In: Proceedings of the European Conference on Artificial Intelligence (ECAI) (1996)

    Google Scholar 

  11. Milde, H., Guckenbiehl, T., Malik, A., Neumann, B., Struss, P.: Integrating Model-based Diagnosis Techniques into Current Work Processes – Three Case Studies from the INDIA Project. AI Communications 13 (2000); Special Issue on Industrial Applications of Model-Based Reasoning

    Google Scholar 

  12. Sachenbacher, M., Struss, P., Carlén, C.M.: A Prototype for Model-based On-board Diagnosis of Automotive Systems. AI Communications 13 (2000); Special Issue on Industrial Applications of Model-Based Reasoning

    Google Scholar 

  13. Picardi, C., Bray, R., Cascio, F., Console, L., Dague, P., Dressler, O., Millet, D., Rehfus, B., Struss, P., Vallée, C.: Idd: Integrating diagnosis in the design of automotive systems. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), Lyon, France, pp. 628–632. IOS Press (2002)

    Google Scholar 

  14. Weld, D., de Kleer, J. (eds.): Readings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann (1989)

    Google Scholar 

  15. Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M., Williams, B.: A remote-agent prototype for spacecraft autonomy. In: Proc. of the SPIE Conference on Optical Science, Engineering, and Instrumentation, New Millennium, Bellingham, Waschington, U.S.A. Space Sciencecraft Control and Tracking, Society of Professional Image Engineers (1996)

    Google Scholar 

  16. Williams, B.C., Nayak, P.P.: Immobile robots – ai in the new millennium. AI Magazine, 16–35 (1996)

    Google Scholar 

  17. Williams, B.C., Nayak, P.P.: A Model-based Approach to Reactive Self-Configuring Systems. In: Proceedings of the Seventh International Workshop on Principles of Diagnosis, pp. 267–274 (1996)

    Google Scholar 

  18. Williams, B.C., Nayak, P.P.: A reactive planner for a model-based executive. In: Proceedings 15th International Joint Conf. on Artificial Intelligence, pp. 1178–1185 (1997)

    Google Scholar 

  19. Crow, J., Rushby, J.: Model-based reconfiguration: Toward an integration with diagnosis. In: Proceedings AAAI, pp. 836–841. Morgan Kaufmann, Los Angeles (1991)

    Google Scholar 

  20. Stumptner, M., Wotawa, F.: Model-based reconfiguration. In: Proceedings Artificial Intelligence in Design, Lisbon, Portugal (1998)

    Google Scholar 

  21. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: A soa-based model supporting adaptive web-based applications. In: Proc. of 3rd Conference on Internet and Web Applications and Services (ICIW 2008), pp. 708–713. IEEE, Athens (2008)

    Chapter  Google Scholar 

  22. Cordier, M.O., Pencolé, Y., Travé-Massuyés, L., Vidal, T.: Characterizing and checking self-healability. In: Proc. of 18th European Conference on Artificial Intelligence (ECAI 2008), Patras, Grece (July 2008)

    Google Scholar 

  23. Karsai, G., Abdelwahed, S., Biswas, G.: Integrated diagnosis and control for hybrid dynamic systems. In: AIAA Guidance, AIAA Guidance, Navigation and Control Conference, Austin, Texas (August 2003)

    Google Scholar 

  24. Narasimhan, S., Biswas, G., Karsai, G., Szemetzy, T., Bowman, T., Kay, M., Keller, K.: Hybrid modeling and diagnosis in the real world: A case study. Working Papers Thirteenth Int Workshop Principles of Diagnosis (June 2002)

    Google Scholar 

  25. Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the modular execution of reconfigurable hybrid systems. Simulation 87(9), 775–808 (2011)

    Article  Google Scholar 

  26. Davis, R., Shrobe, H., Hamscher, W., Wieckert, K., Shirley, M., Polit, S.: Diagnosis based on structure and function. In: Proceedings AAAI, Pittsburgh, pp. 137–142 (August 1982)

    Google Scholar 

  27. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelligence 24, 347–410 (1984)

    Article  Google Scholar 

  28. Davis, R., Hamscher, W.: Model-based reasoning: Troubleshooting. In: Shrobe, H.E. (ed.) Exploring Artificial Intelligence, pp. 297–346. Morgan Kaufmann (1988)

    Google Scholar 

  29. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32(1), 97–130 (1987)

    Article  MATH  Google Scholar 

  31. Wotawa, F.: Adaptive Autonomous Systems – From the System’s Architecture to Testing. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011 Workshops 2011. CCIS, vol. 336, pp. 76–90. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Steinbauer, G., Weber, J., Wotawa, F.: From the real-world to its qualitative representation–practical lessons learned. In: International Workshop on Qualitative Reasoning, pp. 186–191 (2005)

    Google Scholar 

  33. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnosis and systems. Artificial Intelligence 56 (1992)

    Google Scholar 

  34. Console, L., Dupré, D.T., Torasso, P.: On the relationship between abduction and deduction. Journal of Logic and Computation 1(5), 661–690 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault models. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 331–336, Boston (August 1990); Also appears in Readings in Model-Based Diagnosis. Morgan Kaufmann (1992)

    Google Scholar 

  36. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence 41(1), 79–88 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28, 127–162 (1986)

    Article  Google Scholar 

  38. Fröhlich, P., Nejdl, W.: A Static Model-Based Engine for Model-Based Reasoning. In: Proceedings 15th International Joint Conf. on Artificial Intelligence, Nagoya, Japan (August 1997)

    Google Scholar 

  39. Fattah, Y.E., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceedings 14th International Joint Conf. on Artificial Intelligence, pp. 1742–1748 (1995)

    Google Scholar 

  40. Stumptner, M., Wotawa, F.: Diagnosing tree-structured systems. Artificial Intelligence 127(1), 1–29 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sachenbacher, M., Williams, B.C.: Diagnosis as semiring-based constraint optimization. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), Valencia, Spain, pp. 873–877 (2004)

    Google Scholar 

  42. Weld, D.S.: Recent advances in ai planning. AI Magazine 20(2), 93–123 (1999)

    Google Scholar 

  43. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall (2010)

    Google Scholar 

  44. Sun, Y., Weld, D.S.: Beyond simple observation: Planning to diagnose. In: Third International Workshop on Principles of Diagnosis, Rosario, (WA) (October 1992)

    Google Scholar 

  45. Friedrich, G., Gottlob, G., Nejdl, W.: Towards a theory of the repair process. In: Proceedings of the Portuguese Conference on Artificial Intelligence. LNCS (LNAI), Springer, Albufeira (1991); Also appeared at the Model-Based Reasoning Workshop (AAAI 1991), Anaheim (July 1991)

    Google Scholar 

  46. Friedrich, G., Gottlob, G., Nejdl, W.: Formalizing the repair process. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 709–713. John Wiley & Sons, Vienna (1992); Also appeared in the Proceedings of the Second International Workshop on Principles of Diagnosis, Milano (1991)

    Google Scholar 

  47. Friedrich, G., Nejdl, W.: Choosing observations and actions in model-based diagnosis-repair systems. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, Cambridge, MA (October1992)

    Google Scholar 

  48. Wotawa, F., Nica, M., Aichernig, B.K.: Generating distinguishing tests using the minion constraint solver. In: CSTVA 2010: Proceedings of the 2nd Workshop on Constraints for Testing, Verification and Analysis. IEEE (2010)

    Google Scholar 

  49. Steinbauer, G., Mörth, M., Wotawa, F.: Real-time diagnosis and repair of faults of robot control software. In: Proceedings RoboCup International Symposium (2005)

    Google Scholar 

  50. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Artificial Intelligence 111(2), 3–39 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wotawa, F.: On the Relationship between Model-Based Debugging and Program Slicing. Artificial Intelligence 135(1-2), 124–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Weiser, M.: Programmers use slices when debugging. Communications of the ACM 25(7), 446–452 (1982)

    Article  Google Scholar 

  53. Mayer, W.: Static and hybrid analysis in model-based debugging. PhD Thesis, School of Computer and Information Science, University of South Australia (2007)

    Google Scholar 

  54. Nica, M., Nica, S., Wotawa, F.: On the use of mutations and testing for debugging. In: Software: practice & experience (in Press, 2012), http://dx.doi.org/10.1002/spe.1142

  55. Wotawa, F., Nica, M., Moraru, I.D.: Automated debugging based on a constraint model of the program and a test case. The Journal of Logic and Algebraic Programming (in Press, 2012)

    Google Scholar 

  56. Kleiner, A., Steinbauer, G., Wotawa, F.: Towards Automated Online Diagnosis of Robot Navigation Software. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 159–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  57. Brandstötter, M., Hofbaur, M.W., Steinbauer, G., Wotawa, F.: Model-based fault diagnosis and reconfiguration of robot drives. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 1203–1209 (2007)

    Google Scholar 

  58. Murphy, R.R.: Introduction to AI Robotics, 2nd edn. MIT Press, Cambridge (2002)

    Google Scholar 

  59. Hofbaur, M.W., Williams, B.C.: Mode Estimation of Probabilistic Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 253–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinbauer, G., Wotawa, F. (2013). Model-Based Reasoning for Self-Adaptive Systems – Theory and Practice. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds) Assurances for Self-Adaptive Systems. Lecture Notes in Computer Science, vol 7740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36249-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36249-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36248-4

  • Online ISBN: 978-3-642-36249-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics