Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems

  • Chapter
Recent Advances on Hybrid Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 451))

  • 1875 Accesses

Abstract

Ant Colony Optimization (ACO) is a population-based constructive metaheuristic that exploits a form of past performance memory inspired by the foraging behavior of real ants. The behavior of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach of diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of the alpha parameter. The performance of different variants of the ACO algorithm was observed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results on several travelling salesman problem (TSP) instances are presented with the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Meyer, B.: Convergence control in ACO. In: Genetic and Evolutionary Computation Conference (GECCO), Seattle, WA (2004)

    Google Scholar 

  3. Merkle, D., Middendorf, M.: Prospects for dynamic algorithm control: Lessons from the phase structure of ant scheduling algorithms. In: Heckendorn, R.B. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference -Workshop Program. Workshop “The Next Ten Years of Scheduling Research". Morgan Kaufmann Publishers (2001)

    Google Scholar 

  4. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 6, 333–346 (2002)

    Article  Google Scholar 

  5. Li, Y., Li, W.: Adaptive ant colony optimization algorithm based on information entropy, Foundation and application. Fundamenta Informaticae (2007)

    Google Scholar 

  6. Reinelt, G.: TSPLIB. University of Heidelberg, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

  7. Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control and Information. Prentice Hall (1999)

    Google Scholar 

  8. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo et al. (2007)

    Google Scholar 

  9. Stützle, T., López-Ibañez, M., Pellegrini, P., Maur, M., Montes de Oca, M.A., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search. Springer, Berlin (2012)

    Google Scholar 

  10. Valdez, F., Melin, P., Castillo, O.: An Improved Evolutionary Method with Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing 11, 2625–2632 (2011)

    Article  Google Scholar 

  11. Chusanapiputt, S., Nualhong, D., Jantarang, S., Phoomvuthisarn, S.: Selective self-adaptive approach to ant system for solving unit commitment problem. In: Cattolico, M., et al. (eds.) GECCO 2006, pp. 1729–1736. ACM Press, New York (2006)

    Chapter  Google Scholar 

  12. Hao, Z.-F., Huang, H., Qin, Y., Cai, R.: An ACO Algorithm with Adaptive Volatility Rate of Pheromone Trail. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part IV. LNCS, vol. 4490, pp. 1167–1170. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neyoy, H., Castillo, O., Soria, J. (2013). Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33021-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33021-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33020-9

  • Online ISBN: 978-3-642-33021-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics