Abstract
Ant Colony Optimization (ACO) is a population-based constructive metaheuristic that exploits a form of past performance memory inspired by the foraging behavior of real ants. The behavior of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach of diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of the alpha parameter. The performance of different variants of the ACO algorithm was observed to choose one as the basis to the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results on several travelling salesman problem (TSP) instances are presented with the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Meyer, B.: Convergence control in ACO. In: Genetic and Evolutionary Computation Conference (GECCO), Seattle, WA (2004)
Merkle, D., Middendorf, M.: Prospects for dynamic algorithm control: Lessons from the phase structure of ant scheduling algorithms. In: Heckendorn, R.B. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference -Workshop Program. Workshop “The Next Ten Years of Scheduling Research". Morgan Kaufmann Publishers (2001)
Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 6, 333–346 (2002)
Li, Y., Li, W.: Adaptive ant colony optimization algorithm based on information entropy, Foundation and application. Fundamenta Informaticae (2007)
Reinelt, G.: TSPLIB. University of Heidelberg, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control and Information. Prentice Hall (1999)
Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo et al. (2007)
Stützle, T., López-Ibañez, M., Pellegrini, P., Maur, M., Montes de Oca, M.A., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search. Springer, Berlin (2012)
Valdez, F., Melin, P., Castillo, O.: An Improved Evolutionary Method with Fuzzy Logic for Combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing 11, 2625–2632 (2011)
Chusanapiputt, S., Nualhong, D., Jantarang, S., Phoomvuthisarn, S.: Selective self-adaptive approach to ant system for solving unit commitment problem. In: Cattolico, M., et al. (eds.) GECCO 2006, pp. 1729–1736. ACM Press, New York (2006)
Hao, Z.-F., Huang, H., Qin, Y., Cai, R.: An ACO Algorithm with Adaptive Volatility Rate of Pheromone Trail. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part IV. LNCS, vol. 4490, pp. 1167–1170. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Neyoy, H., Castillo, O., Soria, J. (2013). Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33021-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-33021-6_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33020-9
Online ISBN: 978-3-642-33021-6
eBook Packages: EngineeringEngineering (R0)