Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonlinear Estimation with Gaussian Kriging and Riemann Sums

  • Conference paper
  • First Online:
Mathematics of Planet Earth

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

  • 1928 Accesses

Abstract

A practical solution for nonlinear geostatistical estimation is presented as Gaussian kriging and Riemann Sums (KRS). KRS is an association of Gaussian kriging with numerical Riemann integration for a nonlinear kriging solution. The approach returns unbiased nonlinear conditional moments, including heteroscedastic conditional variances that are typical of skewed random variables. KRS is generally applicable to either point or block estimates. Block Gaussian KRS is a new solution for ensemble upscaling of nonlinearly averaging parameter fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutsch, C. V., & Journel, A. G. (1998). GSLIB geostatistical software library and user’s guide (p. 369). Oxford: Oxford University Press.

    Google Scholar 

  2. Armstrong, M., & Matheron, G. (1986). Disjunctive kriging revisited—Part I. Mathematical Geology, 18(8), 711–728.

    Article  Google Scholar 

  3. Ortiz, J., Oz, B., & Deutsch, C. V. (2005). A step by step guide to bi-Gaussian disjunctive kriging. In O. L. Leuangthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (pp. 1097–1102). Netherlands: Springer.

    Chapter  Google Scholar 

  4. Vargas-Guzmán, J. A. (2004). Geostatistics for power models of Gaussian fields. Mathematical Geology, 36(3), 307–322.

    Article  Google Scholar 

  5. Vargas-Guzmán, J. A. (2005). Change of support of transformations: Conservation of lognormality revisted. Mathematical Geology, 37(6), 551–567.

    Article  Google Scholar 

  6. Wackernagel, H. (2003). Multivariate geostatistics (p. 387). Berlin: Springer.

    Book  Google Scholar 

  7. Journel, A. G. (1999). Conditioning geostatistical operations to nonlinear volume averages. Mathematical Geology, 31(8), 931–953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Daniel Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, K.D. (2014). Nonlinear Estimation with Gaussian Kriging and Riemann Sums. In: Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J., Vargas-Guzmán, J. (eds) Mathematics of Planet Earth. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32408-6_184

Download citation

Publish with us

Policies and ethics