Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploring New Ways for Personalized E-Commerce through Digital TV

  • Chapter
Semantic Hyper/Multimedia Adaptation

Summary

The evolution of information technologies is consolidating recommender systems as essential tools in e-commerce.To date, these systems have focused on discovering the items that best match the preferences, interests and needs of individual users, to end up listing those items by decreasing relevance in some menus. In this paper,we propose extending the current scope of recommender systems to better support trading activities, by automatically generating interactive applications that provide the users with personalized commercial functionalities related to the selected items. We explore this idea in the context of Digital TV advertising, with a system that provide personalized commercial functionalities, gathering contents from multiple sources and bring together semantic reasoning techniques, SWRL rules and new architectural solutions for web services and mashups.

This work has been partially funded by the Ministerio de Educación y Ciencia (Gobierno de España) research project TIN2010-20797 (partly financed with FEDER funds), and by the Consellería de Educación e Ordenación Universitaria (Xunta de Galicia) incentives file CN 2011/023 (partly financed with FEDER funds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 739–749 (2005)

    Article  Google Scholar 

  2. Blanco-Fernández, Y., Pazos-Arias, J., López-Nores, M., Gil-Solla, A., Ramos-Cabrer, M.: AVATAR: An improved solution for personalized TV based on semantic inference. IEEE Transactions on Consumer Electronics 52(1), 223–231 (2006)

    Article  Google Scholar 

  3. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  4. Cho, Y., Kim, J.: Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications 26, 233–246 (2004)

    Article  Google Scholar 

  5. Dias, M., Locher, D., Li, M., Elderedy, W., Lisboa, P.: The value of personalized recommender systems to e-business: A case study. In: Proc. of the 2008 ACM Conference on Recommender Systems, pp. 291–294 (2008)

    Google Scholar 

  6. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)

    Article  Google Scholar 

  7. Gawinecki, M., Mateusz, K., Paprzycki, M.: Ontology-based stereotyping in a travel support system. In: Proceedings of the XXI Fall Meeting of Polish Information Processing Society, pp. 73–85 (2005)

    Google Scholar 

  8. Haase, P., Ehrig, M., Hotho, A., Schnizler, B.: Personalized Information Access in a Bibliographic Peer-to-Peer System. In: AAAI Workshop on Semantic Web Personalization, pp. 1–12 (2004)

    Google Scholar 

  9. Hepp, M.: Products and services ontologies: a methodology for deriving OWL ontologies from industrial categorization standards. International Journal on Semantic Web & Information Systems 2(1), 72–99 (2006)

    Article  Google Scholar 

  10. Hepp, M., Leukel, J., Schmitz, V.: A quantitative analysis of product categorization standards: Content, coverage and maintenance of eCl@ss, UNSPSC, eOTD, and the RosettaNet Technical Dictionary. Knowledge and Information Systems 13(1), 77–114 (2007)

    Article  Google Scholar 

  11. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.A.: Distributed automatic service composition in large-scale systems. In: Proc. of the 2nd International Conference on Distributed Event-Based Systems, Rome, Italy (July 2008)

    Google Scholar 

  12. Hung, L.: A personalized recommendation system based on product taxonomy for one-to-one marketing online. Expert Systems with Applications 29, 383–392 (2005)

    Article  Google Scholar 

  13. Kawamura, T., de Blasio, J.A., Hasegawa, T., Paolucci, M., Sycara, K.P.: Public Deployment of Semantic Service Matchmaker with UDDI Business Registry. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 752–766. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kobsa, A., Koenemann, J., Pohl, W.: Personalized Hypermedia Presentation Techniques for Improving Online Customer Relationships. The Knowledge Engineering Review 16(1), 111–155 (2001)

    Article  MATH  Google Scholar 

  15. Krulwich, B.: LifeStyle Finder: Intelligent User Profiling Using Large-Scale Demographic. AI Magazine 18(2), 37–45 (1997)

    Google Scholar 

  16. Kvaloy, T.A., Rongen, E., Tirado-Ramos, A., Sloot, P.: Automatic Composition and Selection of Semantic Web Services. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 184–192. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Lin, N., Kuter, U., Hendler, J.: Web Service composition via problem decomposition across multiple ontologies.In: Proc. of the IEEE Congress on Services, Salt Lake City, USA (July 2007)

    Google Scholar 

  18. López-Nores, M., Pazos-Arias, J.J., García-Duque, J., Blanco-Fernández, Y., Martín-Vicente, M.I., Fernández-Vilas, A., Ramos-Cabrer, M., Gil-Solla, A.: MiSPOT: Dynamic product placement for digital TV through MPEG-4 processing and semantic reasoning. Knowledge and Information Systems (in press), doi:10.1007/s10115-009-0200-8

    Google Scholar 

  19. López-Nores, M., Rey-López, M., Pazos-Arias, J.J., García-Duque, J., Blanco-Fernández, Y., Gil-Solla, A., Díaz-Redondo, R.P., Fernández-Vilas, A., Ramos-Cabrer, M.: Spontaneous interaction with audiovisual contents for personalized e-commerce over Digital TV. Expert Systems with Applications 36, 4192–4197 (2009)

    Article  Google Scholar 

  20. Martin, D.L., Paolucci, M., McIlraith, A.A., Burstein, M.H., McDermott, D.V., McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.P.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Maybury, M., Greiff, W., Boykin, S., Ponte, J., McHenry, C., Ferro, L.: Personalcasting: Tailored broadcast news. In: Personalized Digital Television. Targeting programs to individual users. Kluwer Academic Publishers (2004)

    Google Scholar 

  22. Middleton, S.: Capturing knowledge of user preferences with recommender systems. PhD thesis, Department of Electronic and Computer Science. University of Southampton (2003)

    Google Scholar 

  23. Montaner, M., López, B., De la Rosa, J.: A taxonomy of recommender agents on the Internet. Artificial Intelligence Review 19(4), 285–330 (2003)

    Article  Google Scholar 

  24. Plas, D., Verheijen, M., Zwaal, H., Hutschemaekers, M.: Manipulating context information with swrl. Report of A-MUSE project (2006)

    Google Scholar 

  25. Rada, R., Mili, H., Bicknell, E., Blettnet, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst., Man, and Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  26. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 11(4), 95–130 (1999)

    MATH  Google Scholar 

  27. Rich, E.: User modeling via stereotypes. International Journal of Cognitive Science 3(1), 329–354 (1979)

    Article  MathSciNet  Google Scholar 

  28. Rosco, R.D., Rogers, M.K., Liles, S.: Breaking Down Stereotypes: A Call for an Ontological Model. In: Proceedings of International Conference on System Sciences, pp. 271–278 (2007)

    Google Scholar 

  29. Schafer, J., Konstan, J., Riedl, J.: E-commerce recommendation applications. Data Mining Knowledge Discovery 5(1), 115–151 (2001)

    Article  MATH  Google Scholar 

  30. Shani, G., Rokach, L., Meisles, A., Gleizer, Y., Ben-Shimon, D.: A stereotypes-based hybrid recommender system for media items. In: 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 60–75 (2007)

    Google Scholar 

  31. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web Service composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)

    Article  Google Scholar 

  32. DVB: The Multimedia Home Platform.ETSI standard TS 102 812 (2003), http://www.mhp.org

  33. Walsh, A.E.: UDDI, SOAP, and WSDL: The Web Services Specification reference book. Pearson Education (2002)

    Google Scholar 

  34. Zhang, H., Zheng, S., Yuan, J.: A personalized TV guide system compliant with MHP. IEEE Transactions on Consumer Electronics 51(2), 731–737 (2005)

    Article  Google Scholar 

  35. Zhang, R., Arpirar, I.B., Aleman-Meza, B.: Automatic composition of semantic Web Services. Information Systems Journal, 38–41 (2003)

    Google Scholar 

  36. Zhu, T., Greiner, R., Häubl, G.: An effective complete-web recommender system. In: Proceedings of the 12th International World Wide Web conference, Budapest, Hungary (May 2003)

    Google Scholar 

  37. Ziegler, C., Lausen, G., Konstan, J.: On exploiting classification taxonomies in recommender systems. AI Comnmunications 21(2-3), 97–125 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Blanco-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanco-Fernández, Y., López-Nores, M., Pazos-Arias, J.J., Martín-Vicente, M.I. (2013). Exploring New Ways for Personalized E-Commerce through Digital TV. In: Anagnostopoulos, I., Bieliková, M., Mylonas, P., Tsapatsoulis, N. (eds) Semantic Hyper/Multimedia Adaptation. Studies in Computational Intelligence, vol 418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28977-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28977-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28976-7

  • Online ISBN: 978-3-642-28977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics