Nothing Special   »   [go: up one dir, main page]

Skip to main content

Forgetting Concept and Role Symbols in \(\mathcal{ALCH}\)-Ontologies

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8312))

Abstract

We develop a resolution-based method for forgetting concept and role symbols in \(\mathcal{ALCH}\) ontologies, or for computing uniform interpolants in \(\mathcal{ALCH}\). Uniform interpolants use only a restricted set of symbols, while preserving logical consequences of the original ontology involving these symbols. While recent work towards practical methods for uniform interpolation in expressive description logics limits attention to forgetting concept symbols, we believe most applications would benefit from the possibility to forget both role and concept symbols. We focus on the description logic \(\mathcal{ALCH}\), which allows for the formalisation of role hierarchies. Our approach is based on a recently developed resolution-based calculus for forgetting concept symbols in \(\mathcal{ALC}\) ontologies, which we extend by redundancy elimination techniques to make it practical for larger ontologies. Experiments on \(\mathcal{ALCH}\) fragments of real life ontologies suggest that our method is applicable in a lot of real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Mathematische Annalen 110(1), 390–413 (1935)

    Article  MathSciNet  Google Scholar 

  2. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in expressive description logics with fixpoints based on automata on infinite trees. In: Proc. IJCAI 1999, pp. 84–89. Morgan Kaufmann (1999)

    Google Scholar 

  3. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Proc. KR 1992, pp. 425–435. Morgan Kaufmann (1992)

    Google Scholar 

  4. Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second Order Quantifier Elimination: Foundations, Computational Aspects and Applications. College Publ. (2008)

    Google Scholar 

  5. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: The import-by-query approach. J. Artificial Intelligence Research 45, 197–255 (2012)

    MATH  Google Scholar 

  6. Herzig, A., Mengin, J.: Uniform interpolation by resolution in modal logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 219–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. Bio-Ontologies 2011 (2011)

    Google Scholar 

  8. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale description logic terminologies. In: Proc. IJCAI 2009, pp. 830–835 (2009)

    Google Scholar 

  9. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in \(\mathcal{ALCH}\)-ontologies. Technical Report (2013), http://www.cs.man.ac.uk/~koopmanp

  10. Koopmann, P., Schmidt, R.A.: Implementation and evaluation of forgetting in \(\mathcal{ALC}\)-ontologies. In: Proc. WoMO 2013. CEUR-WS.org (2013)

    Google Scholar 

  11. Koopmann, P., Schmidt, R.A.: Uniform interpolation of \(\mathcal{ALC}\)-ontologies using fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 87–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Ludwig, M., Konev, B.: Towards practical uniform interpolation and forgetting for \(\mathcal{ALC}\) TBoxes. In: Proc. DL 2013, pp. 377–389. CEUR-WS.org (2013)

    Google Scholar 

  13. Lutz, C., Seylan, I., Wolter, F.: An automata-theoretic approach to uniform interpolation and approximation in the description logic \(\mathcal{EL}\). In: Proc. KR 2012. AAAI Press (2012)

    Google Scholar 

  14. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: Proc. IJCAI 2011, pp. 989–995. AAAI Press (2011)

    Google Scholar 

  15. Nikitina, N.: Forgetting in general \(\mathcal{EL}\) terminologies. In: Proc. DL 2011. CEUR-WS.org. (2011)

    Google Scholar 

  16. Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Logic at Work, pp. 307–328. Springer (1999)

    Google Scholar 

  17. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I extract? In: Proc. DL 2009. CEUR-WS.org (2009)

    Google Scholar 

  18. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Proc. OWLED 2008, pp. 26–27. CEUR-WS.org (2008)

    Google Scholar 

  19. Szałas, A.: Second-order reasoning in description logics. J. Appl. Non-Classical Logics 16(3-4), 517–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Eliminating concepts and roles from ontologies in expressive descriptive logics. Computational Intelligence (2012)

    Google Scholar 

  21. Wang, Z., Wang, K., Topor, R., Zhang, X.: Tableau-based forgetting in \(\mathcal{ALC}\) ontologies. In: Proc. ECAI 2010, pp. 47–52. IOS Press (2010)

    Google Scholar 

  22. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in DL-Lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koopmann, P., Schmidt, R.A. (2013). Forgetting Concept and Role Symbols in \(\mathcal{ALCH}\)-Ontologies. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45221-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45220-8

  • Online ISBN: 978-3-642-45221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics