Nothing Special   »   [go: up one dir, main page]

Skip to main content

FPT Is Characterized by Useful Obstruction Sets

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8165))

Included in the following conference series:

Abstract

Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for -̨Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.

This work was supported by the Netherlands Organization for Scientific Research (NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011)

    Google Scholar 

  4. Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theor. Comput. Sci. 233, 107–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dinneen, M.J.: Too many minor order obstructions. J. UCS 3, 1199–1206 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Dinneen, M.J., Cattell, K., Fellows, M.R.: Forbidden minors to graphs with small feedback sets. Discrete Math. 230(1-3), 215–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dinneen, M.J., Lai, R.: Properties of vertex cover obstructions. Discrete Math. 307(21), 2484–2500 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  Google Scholar 

  9. Drucker, A.: New limits to classical and quantum instance compression. In: Proc. 53rd FOCS, pp. 609–618 (2012)

    Google Scholar 

  10. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. ACM 35(3), 727–739 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations (extended abstract). In: Proc. 30th FOCS, pp. 520–525 (1989)

    Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc. (2006)

    Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar \(\mathcal{F}\)-Deletion: Approximation, kernelization and optimal FPT algorithms. In: Proc. 53rd FOCS, pp. 470–479 (2012)

    Google Scholar 

  14. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 90–101. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kratsch, S.: Co-nondeterminism in compositions: a kernelization lower bound for a ramsey-type problem. In: Proc. 23rd SODA, pp. 114–122 (2012)

    Google Scholar 

  17. Kratsch, S., Pilipczuk, M., Rai, A., Raman, V.: Kernel lower bounds using co-nondeterminism: Finding induced hereditary subgraphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 364–375. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Kratsch, S., Wahlström, M.: The AND-conjecture may be necessary. In: Parameterized Complexity Newsletter. FPT Wiki (November 2011)

    Google Scholar 

  19. Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Comb. Theory, Ser. B 73(1), 7–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rué, J., Stavropoulos, K.S., Thilikos, D.M.: Outerplanar obstructions for a feedback vertex set. Eur. J. Comb. 33(5), 948–968 (2012)

    Article  MATH  Google Scholar 

  23. Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Discrete Math. 127, 293–304 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fellows, M.R., Jansen, B.M.P. (2013). FPT Is Characterized by Useful Obstruction Sets. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45043-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45042-6

  • Online ISBN: 978-3-642-45043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics