Nothing Special   »   [go: up one dir, main page]

Skip to main content

Measurements and Assessments on Field Plots

  • Living reference work entry
  • First Online:
Tropical Forestry Handbook
  • 305 Accesses

Abstract

Field assessments and remote sensing imagery are the most essential data sources in forest inventories. While remote sensing provides spatially explicit data for large areas, field (in situ) assessments provide detailed information on trees and stands needed to describe ecological, economic, and socioeconomic characteristics for the sustainable management of forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu. Borneo Plant Ecol 140:139–157

    Article  Google Scholar 

  • Apan AA (1999) GIS applications in tropical forestry. Faculty of Engineering and Surveying, University of Southern Queensland, Toowoomba, p 132

    Google Scholar 

  • Bachmann P, Köhl M, Päivinnen R (1998) Assessment of biodiversity for improved forest planning. Kluwer, Dordrecht

    Book  Google Scholar 

  • Bailey RL (1979) The potential of Weibull-type functions as flexible growth curves: discussion. Can J Forest Res 10:117–118

    Article  Google Scholar 

  • Batalha MA, Aragaki S, Mantovani W (1998) Chave de identificacao das especies vasculares do cerrado em emas (pirassununga, sp) baseada em caracteres vegetativos. Bol Bot Univ Sao Paulo 17:85–108

    Google Scholar 

  • Batista JL, Couto HTZ, Marquesini M (2001) Performance of height-diameter relationship models: analysis in three forest types. Scientia Forestalis 60:149–163

    Google Scholar 

  • Bitterlich W (1962) Genauere Umrechnungsfaktoren Raummaß-Festmaß durch Winkelzählproben. Holzkurier 48, p 11

    Google Scholar 

  • Böhl J, Brändli U-B (2007) Deadwood volume assessment in the third Swiss National Forest Inventory: methods and first results. Eur J For Res 126(3):449–457

    Article  Google Scholar 

  • Böhm M, Löw R, Haag J, Kerwer A, Lüttge U, Rausch T (1993) Evaluation of comparative DNA amplification fingerprinting for rapid species identification within the genus Clusia. Bot Acta 106(5):448–453

    Article  Google Scholar 

  • Bolstad PV (2012) GIS fundamentals: a first textbook on geographic information systems, 4th edn. St. Paul, Eider Press

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO forestry paper, Rome

    Google Scholar 

  • Bruce D, Max TA (1990) Use of profile equations in tree volume estimation. In: LaBau J, Cunia T (eds) USDA Forest Service, Portland, pp 213–220

    Google Scholar 

  • Brünig EF (1973) Species richness and stand diversity in relation to site and succession of forests in Sarawak and Brunei (Borneo). Amazoniana 4(3):293–320

    Google Scholar 

  • Chave J (2006) Measuring wood density for tropical forest trees a field manual. U.P.S. Lab. Evolution et Diversité Biologique (ed) http://www.eci.ox.ac.uk/research/ecodynamics/panamazonia/wood_density_english.pdf (online publication)

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6(1–2):51–71

    Article  Google Scholar 

  • Cochran WG (1977) Sampling techniques, 3rd edn. Wiley, New York

    Google Scholar 

  • Coley PD, Kursar TA (2014) On tropical forests and their pests. Science 343:35–36

    Article  CAS  PubMed  Google Scholar 

  • Comvalius LB (2001) Surinamese timber species: characteristics and utilization. Celos, Paramaribo

    Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Boer P, Gradwell G (eds) Dynamics of populations. PUDOC, Wageningen, pp 298–312

    Google Scholar 

  • Curtis RO (1967) Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Fort Sci 13:365–375

    Google Scholar 

  • Czaplewski RL (1989) Graphical analysis of stem taper in model building. Can J For Res 19:522–524

    Article  Google Scholar 

  • Czaplewski RL, Brown AS, Walker RC (1989) Profile models for estimating log end diameters in the Rocky Mountain Region. USDA Forest Service, Research Paper RM-284, Ft. Collins p 7

    Google Scholar 

  • da Silva Scaranello MA, Ferreira Alves L, Aparecida Vieira S, Barbosa de Camargo P, Joly CA, Martinelli LA (2011) Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Sci Afr 69(1):26–37

    Google Scholar 

  • Das JK, Nautiyal J (2004) Forest variability index: a vector quantifying forest stand diversity and forest compactness. For Policy Econ 6:271–288

    Article  Google Scholar 

  • Delaney M, Brown S, Lugo AE, Torres-Lezama A, Quintero NB (1998) The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela. Biotropica 30(1):2–11

    Article  Google Scholar 

  • Devall MS, Parresol BR, Wright SJ (1995) Dendrochronological analysis of Cordia alliodora, Pseudobombax septenatum and Annona spraguei in central Panama. IAWA J 16:411–424

    Article  Google Scholar 

  • Dominy NJ, Duncan B (2001) GPS and GIS methods in an African rain forest: applications to tropical ecology and conservation. Conserv Ecol 5(2) http://www.consecol.org/vol5/iss2/art6/

  • UN ECE/FAO (2000) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand. Geneva

    Google Scholar 

  • Eckstein D, Ogden J, Jacoby GC, Ash J (1981) Age and growth rate determination in tropical trees: the application of dendrochronological methods. In: Age and growth rate of tropical trees, new directions for research. Yale University, New Heaven, pp 63–106

    Google Scholar 

  • Ehlers M (1990) Remote sensing and geographical information systems: towards integrated spatial information processing. EEE Trans Geosci Remote Sens 28(4):763–766

    Article  Google Scholar 

  • Eichhorn F (1904) Beziehunen zwischen Bestandeshöhe und Bestandesmasse. Allg Forst- und Jagdz 80:45–49

    Google Scholar 

  • Ella AB, Escobin RP (1993) Taxonomy and wood anatomy of the manggasinoro species (shorea spp.): Dipterocarpaceae. Philipp J Sci 122(3):205–232

    Google Scholar 

  • Elfick M, Fryer J, Brinker RC, Wolf PR (1994) Elementary Surveying: SI Adaptation, Pearson Education Ltd, Harlow, p. 528

    Google Scholar 

  • ESRI (2014) Coordinate systems, map projections, and geographic (datum) transformations. http://resources.esri.com/help/9.3/arcgisengine/dotnet/89b720a5-7339-44b0-8b58-0f5bf2843393.htm. Accessed 12 June 2014

  • Fang Z, Bailey RL (1998) Height-diameter models for tropical forests on Hainan Island in southern China. For Ecol Manage 315–327(110):315–327

    Article  Google Scholar 

  • FAO (2004) Global forest resources assessment update 2005: terms and definitions. Working papers 83/E, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF et al (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Franc A (1998) Some mathematical remarks on forest biodiversity. In: Bachmann P, Köhl M, Päivinen R (eds) Assessment of biodiversity for improved forest planning. Kluwer, Dordrecht, pp 159–169

    Chapter  Google Scholar 

  • Freese F (1974) A collection of log rules. Madison, Wisconsin, p 65

    Google Scholar 

  • FVA-Waldnutzung (1997) Stichprobenverfahren zur Rundholzvermessung, 6 June 2014

    Google Scholar 

  • Gadow KV, Hui GY, Albert M (1998) Das Winkelmaß – ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Cbl Ges Forstw 155:1–10

    Google Scholar 

  • Gallant MN (1939) Classification of teak logs. FRI, India, p 28

    Google Scholar 

  • Gifford R (2000) Carbon content of woody roots: revised analysis and a comparison with woody shoot components. n. National carbon accounting system technical report. Canberra

    Google Scholar 

  • Giordano G (1976) Tecnologia del legno. UTET, Torino

    Google Scholar 

  • Gleichmar W, Gerold D (1998) Ndizes zur Charakterisierung der horizontalen Baumverteilung. Forstwiss Centralbl 117:69–80

    Article  Google Scholar 

  • Groenendijk P, Sass-Klaassen U, Bongers F, Zuidema PA (2014) Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For Ecol Manage 323:65–78

    Article  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Hohenadel W (1924) Der Aufbau der Baumschäfte. Forstwiss Centralbl

    Google Scholar 

  • Hohenadel W (1936) Die Bestandesmessung. Forstwiss Centralbl 58:51–61, 69–86, 114–127

    Google Scholar 

  • Huang S, Titus SJ (1992) Comparison of nonlinear height-diameter functions for major Alberta tree species. Can J Forest Res 22:1297–1304

    Article  Google Scholar 

  • Hui G, Zhao X, Zhao Z, Gadow KV (2011) Evaluating tree species spatial diversity based on neighborhood relationships. For Sci 57(4):292–300

    Google Scholar 

  • Hush B, Beers TW, Kershaw JA (2003) Forest mensuration. Wiley, New York

    Google Scholar 

  • IUFRO (1959) The standardization of symbols in forest mensuration. University of Maine, Orono, p 32

    Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Kaufmann E (2002) Estimation of standing timber, growth and Cut. Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 162–196

    Google Scholar 

  • Keller R (1996) Identification of tropical woody plants in the absence of flowers and fruits. A field guide. Birkhäuser Verlag, Basel/Boston/Berlin

    Book  Google Scholar 

  • Keller M (2005) Schweizerisches Landesforstinventar: Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Birmensdorf, p 393

    Google Scholar 

  • Keränen M, Aro E-M, Tyystjärvi E (2003) Automatic plant identification with chlorophyll fluorescence fingerprinting. Precis Agric 4:53–67

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • Köhl M, Zingg A (1996) Eignung von Diversitätsindizes bei Langzeituntersuchungen zur Biodiversität in Waldbeständen. Allg Forst- u J-Zeitung 167(4):76–85

    Google Scholar 

  • Köhl M, Magnussen S, Marchetti M (2006) Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Kollmann FFP, Cotè WA (1968) Principles of wood sciences. Springer, New York

    Book  Google Scholar 

  • Kublin E, Breidenbach J (2013) Package “TapeR” http://cran.r-project.org/web/packages/TapeR/TapeR.pdf (online publication)

  • Kublin E, Breidenbach J, Kaendler G (2013) A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur J For Res 132:983–997

    Article  Google Scholar 

  • Kuzelka K, Marusàk R (2014) Comparison of selected splines for stem form modeling: a case study in Norway spruce. Ann For Res 57(1):137–148

    Google Scholar 

  • Lamprecht H (1989) Silviculture in the tropics: tropical forest ecosystems and their tree species. Possibilities and methods for their long term utilization. GTZ Eschborn

    Google Scholar 

  • Ligot G, Lejeune P, Rondeux J, Hébert J (2012) Assessing and harmonizing lying deadwood volume with regional forest inventory data in Wallonia (Southern region of Belgium). Open Forest Sci J 3, 15–22

    Google Scholar 

  • Loetsch F, Zöhrer F, Haller KE (1973) Forest inventory. BLV Verlagsanstalt, München/Bern/Wien, p 469

    Google Scholar 

  • Lombardi F, Lasserre B, Chirici G, Tognetti R, Marchetti M (2012) Deadwood occurrence and forest structure as indicators of old-growth forest conditions in Mediterranean mountainous ecosystems. Ecoscience 19(4):244–355

    Article  Google Scholar 

  • Lorenzi H (2002) Árvores Brasileiras, Manual de identificação e cultivo de Plantas Arbóreas Nativas do Brasil. Instituto Plantarum, Nova Odessa

    Google Scholar 

  • Luxmi C, Raturi RD, Rao RV, Dayal R (1995) Wood anatomy of Indian Flacourtiaceae. Indian Forester 121(9)

    Google Scholar 

  • Luxmi C, Raturi RD, Rao RV, Dayal R (1998) Identification of Indien bamboos using culm epidermal features – an overview. In: The proceeding of national seminar on processing and utilisation of plantation timbers and bamboo. IPIRTI, Bangalore, pp 66–73

    Google Scholar 

  • Magnussen S (1994) A coordinate-free area variance estimator for forest stands with a fuzzy outline. For Sci 42:76–85

    Google Scholar 

  • Magnussen S, Boyle TJB (1995) Estimating sample size for inference about Shannon ± Weaver and the Simpson indices of species diversity. For Ecol Manage 78:71–84

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London, p 179

    Book  Google Scholar 

  • Marchetti M (2004) Monitoring and indicators of forest biodiversity in Europe – form ideas to operationality. In: EFI proceedings 51, Joensuu, p 526

    Google Scholar 

  • Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equations. For Sci 22:283–289

    Google Scholar 

  • Maydell VHJ (1983) Arbres et arbustes du Sahel, leurs caracteristiques et leurs utilisations. GTZ, Eschborn/Ts

    Google Scholar 

  • Moore BA, Allard G (2011) Abiotic disturbances and their influence on forest health. A review. Working paper, Rome

    Google Scholar 

  • Nair KSS (2007) Tropical forest insect pests – ecology, impact and management. Cambridge University Press, New York, p 404

    Book  Google Scholar 

  • Neumann M, Starlinger F (2001) The significance of different indices for stand structure and diversity forests. For Ecol Manage 145(91):91–108

    Article  Google Scholar 

  • Noack D (1971) Evaluation of properties of tropical timbers. J Inst Wood Sci 5(5):17–23

    Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  • Otto HJ (1994) Walsökologie. Ulmer, Stuttgart

    Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patino S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210

    Article  Google Scholar 

  • Palmer JG, Murphy JO (1993) An extended tree-ring chronology (teak) from Java. Proc Koninklijke Nederlandse Akademie van Wetenschappen-Biol Chem Geol Phys Med Sci 96:27–41

    Google Scholar 

  • Parmentier I, Duminil J, Kuzmina M, Philippe M, Thomas DW, Kenfack D, Chuyong G, Cruaud C, Hardy OJ (2013) How effective are DNA barcodes in the identification of African rainforest trees? PLoS One 84(4)

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Prodan M (1965) Holzmesslehre. Sauerländers, Frankfurt

    Google Scholar 

  • Pumijumnong N, Eckstein D, Sass U (1995) Tree-ring research on Tectona grandis in northern Thailand. IAWA J 16:385–392

    Article  Google Scholar 

  • Rajora OP, Zsuffa O (1991) Screening populus deltoides Marsh. Selections by allozymes to assure species identity. Scand J For Res 6(1–4):471–478

    Article  Google Scholar 

  • Rejmánek M, Brewer SW (2001) Vegetative identification of tropical woody plants: state of the art and annotated bibliography. Biotropica 33(2):214–228

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Richter C (2014) Wood characteristics. Springer, Heidelberg

    Google Scholar 

  • Ricotta C, Corona P, Marchetti M, Chirici G, Innamorati S (2003) LaDy: software for assessing local landscape diversity profiles of raster land cover maps using geographic windows. Environ Model Software 18:373–378

    Article  Google Scholar 

  • Ringvall A, Ståhl G (1999) Field aspects of line intersect sampling for assessing coarse woody debris. For Ecol Manage 118:163–170

    Article  Google Scholar 

  • Roesch FA (1993) Adaptive cluster sampling for forest inventories. For Sci 39:655–669

    Google Scholar 

  • Rondeux J, Bertini R, Bastrup-Birk A, Corona P, Latte N, McRoberts RE, Ståhl G, Winter S, Chirici G (2012) Assessing deadwood using harmonized national forest inventory data. For Sci 58(3):269–283

    Google Scholar 

  • Roth I (1981) Structural patterns of tropical barks. Borntraeger, Berlin

    Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:267–281

    Article  Google Scholar 

  • Saldarriaga JG, West DC, Thorp ML (1986) Forest succession in the Upper Rio Negro of Colombia and Venezuela. Environmental Sciences Division, Oak Ridge

    Google Scholar 

  • Santander Flores C, Albertin W (1974) Performance of Dalbergia retusa Hemsl. in the humid tropics. Turrialba 24(1):76–83

    Google Scholar 

  • Schmid-Haas P, Werner J, Baumann E (1978) Kontrollstichproben: Aufnahmeinstruktion. Bericht 186. Eidg. Anst. Forstl. Versuchswes, Birmensdorf, p 57

    Google Scholar 

  • Sharma M, Zhang SY (2001) Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. For Ecol Manage 198(1–3):39–53

    Google Scholar 

  • Smaltschinski T (1983) Individuelle Baumschaftform und cubische Spline Interpolation [Individual taper curve of trees and cubic spline interpolation]. Allgemeine Forstund Jagdzeitung 155:193–197

    Google Scholar 

  • Smith AP (1979) Buttressing of tropical trees in relation to bark thickness in Dominica. Biotropica 11(2):159–160

    Article  Google Scholar 

  • Ståhl G (1998) Transect relascope sampling – a method for the quantification of coarse woody debris. For Sci 44:58–63

    Google Scholar 

  • Sterba H (1980) Stem-curves: a review of literature. For Abs 41:141–145

    Google Scholar 

  • Tang S (1994) Self-adjusted height-diameter curves and one entry volume model. For Res 7:512–518

    Google Scholar 

  • Thompson SK (1992) Sampling. Wiley, New York

    Google Scholar 

  • Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–449

    Article  Google Scholar 

  • Uhl C, Buschbacher R, Serrao EAS (1988) Abandoned pastures in eastern Amazonia. I. Pattern of plant succession. J Ecol 76:663–681

    Article  Google Scholar 

  • Vanclay JK (1995) Growth models for tropical forests: a synthesis of models and methods. For Sci 41:7–42

    Google Scholar 

  • Vanclay JK (1996) Estimating sustainable timber production from tropical forests. CIFOR working paper, p 17

    Google Scholar 

  • Vetter RE, Botosso RC (1989) Remarks on age and growth rate determination of Amazonian trees. IAWA J 10:133–145

    Article  Google Scholar 

  • West PE (2009) Trees and forest measurement. Springer, Heidelberg

    Book  Google Scholar 

  • Wilent S (2014) A look through the TruPulse 200L rangefinder. For Sour 19:15

    Google Scholar 

  • Wilson AM, Bollandsås OM, Eid T (2013) Relationships between diameter and height of trees in natural tropical forest in Tanzania. South For J For Sci 75(4):221–237

    Google Scholar 

  • Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics. Lundqua Rep 34:338–342

    Google Scholar 

  • Worbes M, Junk WJ (1989) Dating tropical trees by means of C-14 from bomb tests. Ecol Lett 70:503–507

    Article  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Google Scholar 

  • Xing P, Zhang Q-B, Baker PJ (2012) Age and radial growth pattern of four tree species in a subtropical forest of China. Trees 26:283–290

    Article  Google Scholar 

  • Zingg A (1988) Schweizerisches Landesforstinventar, Anleitung für die Erstaufnahme 1982–1986. Eidgen. AnstaltForstl. Versuchswes., Birmensdorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Köhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Köhl, M., Marchetti, M. (2014). Measurements and Assessments on Field Plots. In: Köhl, M., Pancel, L. (eds) Tropical Forestry Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41554-8_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41554-8_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41554-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics