Nothing Special   »   [go: up one dir, main page]

Skip to main content

Action Recognition with HOG-OF Features

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

In this paper a simple and efficient framework for single human action recognition is proposed. In two parallel processing streams, motion information and static object appearances are gathered by introducing a frame-by-frame learning approach. For each processing stream a Random Forest classifier is separately learned. The final decision is determined by combining both probability functions. The proposed recognition system is evaluated on the KTH data set for single human action recognition with original training/testing splits and a 5-fold cross validation. The results demonstrate state-of-the-art accuracies with an overall training time of 30 seconds on a standard workstation.

This work has been partially funded by the ERC within the starting grant Dynamic MinVIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing Surveys 43(3), 16:1–16:43 (2011)

    Google Scholar 

  2. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation (2000)

    Google Scholar 

  3. Breiman, L.: Random forests. In: Machine Learning, vol. 45, pp. 5–32 (2001)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  5. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156. IEEE (1996)

    Google Scholar 

  6. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17 (1981)

    Google Scholar 

  7. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  8. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial intelligence (1981)

    Google Scholar 

  9. Lui, Y.M., Beveridge, J., Kirby, M.: Action classification on product manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 833–839 (2010)

    Google Scholar 

  10. Mauthner, T., Roth, P.M., Bischof, H.: Instant action recognition. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 1–10. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. O’Hara, S., Draper, B.: Scalable action recognition with a subspace forest. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1210–1217 (2012)

    Google Scholar 

  12. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  13. Sadanand, S., Corso, J.J.: Action bank: A high-level representation of activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  14. Schindler, K., Van Gool, L.: Action snippets: How many frames does human action recognition require? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  15. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 3, pp. 32–36 (2004)

    Google Scholar 

  16. Seo, H.J., Milanfar, P.: Action recognition from one example. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 867–882 (May)

    Google Scholar 

  17. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600. IEEE (1994)

    Google Scholar 

  18. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176 (2011)

    Google Scholar 

  19. Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: British Machine Vision Conference (BMVC) (2009)

    Google Scholar 

  20. Zhang, Y., Liu, X., Chang, M.-C., Ge, W., Chen, T.: Spatio-temporal phrases for activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 707–721. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumann, F. (2013). Action Recognition with HOG-OF Features. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics