Nothing Special   »   [go: up one dir, main page]

Skip to main content

Planar Packing of Binary Trees

  • Conference paper
Algorithms and Data Structures (WADS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8037))

Included in the following conference series:

Abstract

In the graph packing problem we are given several graphs and have to map them into a single host graph G such that each edge of G is used at most once. Much research has been devoted to the packing of trees, especially to the case where the host graph must be planar. More formally, the problem is: Given any two trees T 1 and T 2 on n vertices, we want a simple planar graph G on n vertices such that the edges of G can be colored with two colors and the subgraph induced by the edges colored i is isomorphic to T i , for i ∈ {1,2}.

A clear exception that must be made is the star tree which cannot be packed together with any other tree. But a popular hypothesis states that this is the only exception, and all other pairs of trees admit a planar packing. Previous proof attempts lead to very limited results only, which include a tree and a spider tree, a tree and a caterpillar, two trees of diameter four and two isomorphic trees.

We make a step forward and prove the hypothesis for any two binary trees. The proof is algorithmic and yields a linear time algorithm to compute a plane packing, that is, a suitable two-edge-colored host graph along with a planar embedding for it. In addition we can also guarantee several nice geometric properties for the embedding: vertices are embedded equidistantly on the x-axis and edges are embedded as semi-circles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akiyama, J., Chvátal, V.: Packing paths perfectly. Discrete Mathematics 85(3), 247–255 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caro, Y., Yuster, R.: Packing graphs: The packing problem solved. Electr. J. Comb. 4(1) (1997)

    Google Scholar 

  4. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51(4), 207–211 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms & Applications 3(3), 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  6. Frank, A., Szigeti, Z.: A note on packing paths in planar graphs. Math. Program. 70(2), 201–209 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Frati, F.: Planar packing of diameter-four trees. In: 21st Canadian Conference on Computational Geometry (CCCG 2009), pp. 95–98 (2009)

    Google Scholar 

  9. Frati, F., Geyer, M., Kaufmann, M.: Planar packings of trees and spider trees. Information Processing Letters 109(6), 301–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. García, A., Hernando, C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar graphs. J. Graph Theory, 172–181 (2002)

    Google Scholar 

  11. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

    MATH  Google Scholar 

  12. Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self–intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Gonçalves, D.: Edge partition of planar graphs into two outerplanar graphs. In: Proc. 37th Annu. ACM Sympos. Theory Comput., pp. 504–512 (2005)

    Google Scholar 

  14. Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.: A note on packing two trees into \(K\sb{N}\). Ars Combin. 11, 149–153 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Maheo, M., Saclé, J.-F., Woźniak, M.: Edge-disjoint placement of three trees. European J. Combin. 17(6), 543–563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey. Graphs and Combinatorics 14(1), 59–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nash-Williams, C.S.J.A.: Edge-Disjoint Spanning Trees of Finite Graphs. Journal of the London Mathematical Society-second Series s1-36, 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  18. Oda, Y., Ota, K.: Tight planar packings of two trees. In: European Workshop on Computational Geometry, pp. 215–216 (2006)

    Google Scholar 

  19. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. Journal of the London Mathematical Society s1-36(1), 221–230 (1961)

    Article  MathSciNet  Google Scholar 

  21. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D. (2013). Planar Packing of Binary Trees. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40104-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40103-9

  • Online ISBN: 978-3-642-40104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics