Nothing Special   »   [go: up one dir, main page]

Skip to main content

Trajectory Grouping Structure

  • Conference paper
Algorithms and Data Structures (WADS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8037))

Included in the following conference series:

Abstract

The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters, namely group size, group duration, and entity inter-distance. These parameters allow us to obtain detailed or global views of the data. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. Although there is no ground truth for the groups in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial, algorithmic, and experimental results.

MB, BS & FS are supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 612.001.106, 639.022.707 & 612.001.022, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Computational Geometry 41(3), 111–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392(1-3), 5–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchin, K., Buchin, M., van Kreveld, M.J., Speckmann, B., Staals, F.: Trajectory grouping structures. CoRR, abs/1303.6127 (2013)

    Google Scholar 

  4. Dey, T.K., Wang, Y.: Reeb graphs: approximation and persistence. In: Proc. 27th ACM Symp. on Computational Geometry, pp. 226–235 (2011)

    Google Scholar 

  5. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., Snoeyink, J.: Time-varying Reeb graphs for continuous space-time data. Computational Geometry 41(3), 149–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edelsbrunner, H., Harer, J.L.: Computational Topology – an introduction. American Mathematical Society (2010)

    Google Scholar 

  7. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd International Conference Knowledge Discovery and Data Mining, vol. 1996, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  8. Fomenko, A., Kunii, T. (eds.): Topological Methods for Visualization. Springer, Tokyo (1997)

    Google Scholar 

  9. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory data. In: Proc. 14th ACM International Symposium on Advances in Geographic Information Systems, GIS 2006, pp. 35–42. ACM (2006)

    Google Scholar 

  10. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of patterns in 2D trajectories of moving points. GeoInformatica 11, 195–215 (2007)

    Article  Google Scholar 

  11. Huang, Y., Chen, C., Dong, P.: Modeling herds and their evolvements from trajectory data. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 90–105. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1, 1068–1080 (2008)

    Google Scholar 

  13. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: Mining relaxed temporal moving object clusters. PVLDB 3(1), 723–734 (2010)

    Google Scholar 

  15. Oregon Department of Fish and Wildlife and the USDA Forest Service. The Starkey project (2004)

    Google Scholar 

  16. Parsa, S.: A deterministic O(m logm) time algorithm for the Reeb graph. In: Proc. 28th ACM Symp. on Computational Geometry, pp. 269–276 (2012)

    Google Scholar 

  17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sumpter, D.: Collective Animal Behavior. Princeton University Press (2010)

    Google Scholar 

  19. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: Proc. 17th ACM International Conference on Advances in Geographic Information Systems, GIS 2009, pp. 286–295. ACM (2009)

    Google Scholar 

  20. Wang, Y., Lim, E.-P., Hwang, S.-Y.: Efficient algorithms for mining maximal valid groups. The VLDB Journal 17(3), 515–535 (2008)

    Article  Google Scholar 

  21. Wilensky, U.: NetLogo flocking model. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F. (2013). Trajectory Grouping Structure. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40104-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40103-9

  • Online ISBN: 978-3-642-40104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics