Abstract
This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as GlossaryTerm
SLAM
. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (GlossaryTerm
EKF
); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (GlossaryTerm3-D
) SLAM using visual and red green blue distance-sensors (GlossaryTermRGB-D
), and close with a discussion of open research problems in robotic mapping.Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-D:
-
two-dimensional
- 3-D:
-
three-dimensional
- DCS:
-
dynamic covariance scaling
- DOF:
-
degree of freedom
- EKF:
-
extended Kalman filter
- fastSLAM:
-
fast simultaneous localization and mapping
- GPS:
-
global positioning system
- GPU:
-
graphics processing unit
- ICP:
-
iterative closest point
- PCL:
-
point cloud library
- PTAM:
-
parallel tracking and mapping
- RGB-D:
-
red green blue distance
- SAM:
-
smoothing and mapping
- SFM:
-
structure from motion
- SGD:
-
stochastic gradient descent
- SLAM:
-
simultaneous localization and mapping
- SSA:
-
sparse surface adjustment
References
C.F. Gauss: Theoria Motus Corporum Coelestium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections) (Perthes and Bessen, Hamburg 1809), Republished in 1857 and by Dover in 1963
D.C. Brown: The bundle adjustment – Progress and prospects, Int. Arch. Photogramm. 21(3), 3:3–3:35 (1976)
G. Konecny: Geoinformation: Remote Sensing, Photogrammetry and Geographical Information Systems (Taylor Francis, London 2002)
B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon: Bundle adjustment – A modern synthesis, Lect. Notes Comput. Sci. 62, 298–372 (2000)
R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision (Cambridge Univ. Press, Cambridge 2003)
T. Bailey, H.F. Durrant-Whyte: Simultaneous localisation and mapping (SLAM): Part II, Robotics Autom. Mag. 13(3), 108–117 (2006)
H.F. Durrant-Whyte, T. Bailey: Simultaneous localisation and mapping (SLAM): Part I, Robotics Autom. Mag. 13(2), 99–110 (2006)
G. Grisetti, C. Stachniss, W. Burgard: Nonlinear constraint network optimization for efficient map learning, IEEE Trans. Intell. Transp. Syst. 10(3), 428–439 (2009)
S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge, 2005)
R. Smith, M. Self, P. Cheeseman: A stochastic map for uncertain spatial relationships, Proc. Int. Symp. Robotics Res. (ISRR) (MIT Press, Cambridge 1988) pp. 467–474
R. Smith, M. Self, P. Cheeseman: Estimating uncertain spatial relationships in robotics. In: Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong (Springer Verlag, Berlin, Heidelberg 1990) pp. 167–193
P. Moutarlier, R. Chatila: Stochastic multisensory data fusion for mobile robot location and environment modeling, 5th Int. Symp.Robotics Res. (ISRR) (1989) pp. 207–216
P. Moutarlier, R. Chatila: An experimental system for incremental environment modeling by an autonomous mobile robot, 1st Int. Sym. Exp. Robotics (ISER) (1990)
R. Kalman: A new approach to linear filtering and prediction problems, J. Fluids 82, 35–45 (1960)
A.M. Jazwinsky: Stochastic Processes and Filtering Theory (Academic, New York 1970)
M.G. Dissanayake, P.M. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba: A solution to the simultaneous localization and map building (SLAM) Problem, IEEE Trans. Robotics Autom. 17(3), 229–241 (2001)
J. Neira, J. Tardos, J. Castellanos: Linear time vehicle relocation in SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 427–433
J. Neira, J.D. Tardos: Data association in stochastic mapping using the joint compatibility test, IEEE Trans. Robotics Autom. 17(6), 890–897 (2001)
G.D. Tipaldi, M. Braun, K.O. Arras: Flirt: interest regions for 2D range data with applications to robot navigation, Proc. Int. Symp.Exp. Robotics (ISER) (2010)
G.D. Tipaldi, L. Spinello, W. Burgard: Geometrical flirt phrases for large scale place recognition in 2D range data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)
T. Bailey: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments, Ph.D. Thesis (Univ. of Sydney, Sydney 2002)
J.J. Leonard, R.R. Rikoski, P.M. Newman, M. Bosse: Mapping partially observable features from multiple uncertain vantage points, Int. J. Robotics Res. 21(10), 943–975 (2002)
A.J. Davison: Real-time simultaneous localisation and mapping with a single camera, Proc. IEEE 9th Int. Conf. Comput. Vis. (2003) pp. 1403–1410
J.M.M. Montiel, J. Civera, A.J. Davison: Unified inverse depth parametrization for monocular SLAM, Robotics Sci. Syst., Vol. 1 (2006)
M. Bosse, P.M. Newman, J. Leonard, S. Teller: Simultaneous localization and map building in large-scale cyclic environments using the Atlas Framework, Int. J. Robotics Res. 23(12), 1113–1139 (2004)
J. Nieto, T. Bailey, E. Nebot: Scan-SLAM: Combining EKF-SLAM and scan correlation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)
J. Guivant, E. Nebot: Optimization of the simultaneous localization and map building algorithm for real time implementation, IEEE Trans. Robotics. Autom. 17(3), 242–257 (2001)
J.J. Leonard, H. Feder: A computationally efficient method for large-scale concurrent mapping and localization, Proc. 9th Int. Symp. Robotics Res. (ISRR), ed. by J. Hollerbach, D. Koditschek (1999) pp. 169–176
J.D. Tardós, J. Neira, P.M. Newman, J.J. Leonard: Robust mapping and localization in indoor environments using sonar data, Int. J. Robotics Res. 21(4), 311–330 (2002)
S.B. Williams, G. Dissanayake, H.F. Durrant-Whyte: Towards multi-vehicle simultaneous localisation and mapping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2743–2748
R.M. Eustice, H. Singh, J.J. Leonard: Exactly sparse delayed-state filters for view-based SLAM, IEEE Trans. Robotics 22(6), 1100–1114 (2006)
V. Ila, J.M. Porta, J. Andrade-Cetto: Information-based compact pose SLAM, IEEE Trans. Robotics 26(1), 78–93 (2010)
S. Thrun, D. Koller, Z. Ghahramani, H.F. Durrant-Whyte, A.Y. Ng: Simultaneous mapping and localization with sparse extended information filters, Proc.5th Int. Workshop Algorithmic Found.Robotics, ed. by J.-D. Boissonnat, J. Burdick, K. Goldberg, S. Hutchinson (2002)
M.R. Walter, R.M. Eustice, J.J. Leonard: Exactly sparse extended information filters for feature-based SLAM, Int. J. Robotics Res. 26(4), 335–359 (2007)
T. Bailey, J. Nieto, J. Guivant, M. Stevens, E. Nebot: Consistency of the EKF-SLAM algorithm, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2006) pp. 3562–3568
S. Huang, G. Dissanayake: Convergence and consistency analysis for extended Kalman filter based SLAM, IEEE Trans. Robotics 23(5), 1036–1049 (2007)
G.P. Huang, A.I. Mourikis, S.I. Roumeliotis: Observability-based Rules for Designing Consistent EKF SLAM Estimators, Int. J. Robotics Res. 29, 502–528 (2010)
N. Metropolis, S. Ulam: The Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335–341 (1949)
D. Blackwell: Conditional expectation and unbiased sequential estimation, Ann. Math. Stat. 18, 105–110 (1947)
C.R. Rao: Information and accuracy obtainable in estimation of statistical parameters, Bull. Calcutta Math. Soc. 37(3), 81–91 (1945)
K. Murphy, S. Russel: Rao--Blackwellized particle filtering for dynamic Bayesian networks. In: Sequential Monte Carlo Methods in Practice, ed. by A. Docout, N. de Freitas, N. Gordon (Springer, Berlin 2001) pp. 499–516
M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proc. AAAI Natl. Conf.Artif. Intell. (2002)
J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo 1988)
J. Guivant, E. Nebot, S. Baiker: Autonomous navigation and map building using laser range sensors in outdoor applications, J. Robotics Syst. 17(10), 565–583 (2000)
G. Grisetti, C. Stachniss, W. Burgard: Improved techniques for grid mapping with Rao-Blackwellized particle filters, IEEE Trans. Robotics 23, 34–46 (2007)
D. Hähnel, D. Fox, W. Burgard, S. Thrun: A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)
C. Stachniss, G. Grisetti, W. Burgard, N. Roy: Evaluation of gaussian proposal distributions for mapping with rao-blackwellized particle filters, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2007)
A. Eliazar, R. Parr: DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, Proc. 16th Int. Jt. Conf. Artif. Intell. (IJCAI) (2003) pp. 1135–1142
A. Eliazar, R. Parr: DP-SLAM 2.0, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2004) pp. 1314–1320
G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, D. Nardi: Fast and accurate SLAM with Rao-Blackwellized particle filters, J. Robotics Auton. Syst. 55(1), 30–38 (2007)
D. Roller, M. Montemerlo, S. Thrun, B. Wegbreit: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, Int. Jt. Conf. Artif. Intell. (IICAI) (Morgan Kaufmann, San Francisco 2003) pp. 1151–1156
R. van der Merwe, N. de Freitas, A. Doucet, E. Wan: The unscented particle filter, Proc. Adv. Neural Inform. Process. Syst. Conf. (2000) pp. 584–590
C. Stachniss, G. Grisetti, W. Burgard: Recovering particle diversity in a Rao-Blackwellized particle filter for SLAM after actively closing loops, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 655–660
F. Lu, E. Milios: Globally consistent range scan alignment for environmental mapping, Auton. Robots 4, 333–349 (1997)
F. Dellaert: Square root SAM, Robotics Sci. Syst., ed. by S. Thrun, G. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005)
T. Duckett, S. Marsland, J. Shapiro: Learning globally consistent maps by relaxation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 3841–3846
T. Duckett, S. Marsland, J. Shapiro: Fast, on-line learning of globally consistent maps, Auton. Robots 12(3), 287–300 (2002)
J. Folkesson, H.I. Christensen: Graphical SLAM: A self-correcting map, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 383–390
U. Frese, G. Hirzinger: Simultaneous localization and mapping – A discussion, Proc. IJCAI Workshop Reason. Uncertain.Robotics (2001) pp. 17–26
M. Golfarelli, D. Maio, S. Rizzi: Elastic correction of dead-reckoning errors in map building, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998) pp. 905–911
J. Gutmann, K. Konolige: Incremental mapping of large cyclic environments, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (CIRA) (2000) pp. 318–325
G. Grisetti, R. Kümmerle, C. Stachniss, W. Burgard: A Tutorial on Graph-based SLAM, IEEE Trans.Intell. Transp. Syst. Mag. 2, 31–43 (2010)
K. Konolige: Large-scale map-making, Proc. AAAI Natl. Conf. Artif. Intell. (MIT Press, Cambridge 2004) pp. 457–463
M. Montemerlo, S. Thrun: Large-scale robotic 3-D mapping of urban structures, Springer Tract. Adv. Robotics 21, 141–150 (2005)
G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, C. Hertzberg: Hierarchical optimization on manifolds for online 2D and 3D mapping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)
M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, F. Dellaert: iSAM2: Incremental smoothing and mapping using the Bayes tree, Int. J. Robotics Res. 31, 217–236 (2012)
M. Kaess, A. Ranganathan, F. Dellaert: iSAM: Incremental Smoothing and Mapping, IEEE Trans. Robotics 24(6), 1365–1378 (2008)
C. Estrada, J. Neira, J.D. Tardós: Hierarchical SLAM: Real-time accurate mapping of large environments, IEEE Trans. Robotics 21(4), 588–596 (2005)
K. Ni, F. Dellaert: Multi-level submap based SLAM using nested dissection, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010)
M. Ruhnke, R. Kümmerle, G. Grisetti, W. Burgard: Highly accurate maximum likelihood laser mapping by jointly optimizing laser points and robot poses, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)
M. Ruhnke, R. Kümmerle, G. Grisetti, W. Burgard: Highly accurate 3D surface models by sparse surface adjustment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)
Y. Liu, S. Thrun: Results for outdoor-SLAM using sparse extended information filters, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)
N. Sünderhauf, P. Protzel: BRIEF-Gist – Closing the loop by simple means, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 1234–1241
N. Sünderhauf, P. Protzel: Switchable constraints for robust pose graph SLAM, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)
P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, W. Burgard: Robust map optimization using dynamic covariance scaling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)
E. Olson: Recognizing places using spectrally clustered local matches, J. Robotics Auton. Syst. 57(12), 1157–1172 (2009)
Y. Latif, C. Cadena Lerma, J. Neira: Robust loop closing over time, Robotics Sci. Syst. (2012)
E. Olson, P. Agarwal: Inference on networks of mixtures for robust robot mapping, Robotics Sci. Syst. (2012)
F. Dellaert: Factor graphs and GTSAM: A hands-on introduction, Tech. Rep. GT-RIM-CP & R-2012-002 (Georgia Tech, Atlanta 2012)
R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard: G²o: A general framework for graph optimization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)
D.M. Rosen, M. Kaess, J.J. Leonard: An incremental trust-region method for robust online sparse least-squares estimation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1262–1269
L. Carlone, R. Aragues, J. Castellanos, B. Bona: A linear approximation for graph-based simultaneous localization and mapping, Robotics Sci. Syst. (2011)
G. Grisetti, R. Kümmerle, K. Ni: Robust optimization of factor graphs by using condensed measurements, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2012)
S. Izadi, R.A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli, J. Shotton, A.J. Davison, A. Fitzgibbon: Kinectfusion: Real-time dynamic 3D surface reconstruction and interaction, ACM SIGGRAPH Talks (2011) p. 23
G. Klein, D. Murray: Parallel tracking and mapping for small AR workspaces, IEEEACM Int. Symp. Mixed Augment. Real. (ISMAR) (2007) pp. 225–234
F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard: An evaluation of the RGB-D SLAM system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)
H. Strasdat, A.J. Davison, J.M.M. Montiel, K. Konolige: Double window optimisation for constant time visual SLAM, Int. Conf.Computer Vis. (ICCV) (2011)
A. Nüchter: 3D robot mapping, Springer Tract. Adv. Robotics 52 (2009)
U. Frese: Treemap: An $O(\log n)$ algorithm for indoor simultaneous localization and mapping, Auton. Robots 21(2), 103–122 (2006)
G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent, Robotics Sci. Syst. (2007)
E. Olson, J.J. Leonard, S. Teller: Fast iterative alignment of pose graphs with poor initial estimates, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2262–2269
T.M. Cover, J.A. Thomas: Elements of Information Theory (Wiley, New York 1991)
E. Olson, J.J. Leonard, S. Teller: Spatially-adaptive learning rates for online incremental SLAM, Robotics Sci. Syst. (2007)
G. Grisetti, D. Lordi Rizzini, C. Stachniss, E. Olson, W. Burgard: Online constraint network optimization for efficient maximum likelihood map learning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)
M. Kaess, A. Ranganathan, F. Dellaert: Fast incremental square root information smoothing, Int. Jt. Conf.Artif. Intell. (ISCAI) (2007)
P. Agarwal, E. Olson: Evaluating variable reordering strategies for SLAM, Proc. IEEE/RSJ Int. Conf. Intel Robots Syst. (IROS) (2012)
K. Ni, D. Steedly, F. Dellaert: Tectonic SAM: exact, out-of-core, submap-based SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1678–1685
G. Sibley, C. Mei, I. Reid, P. Newman: Adaptive relative bundle adjustment, Robotics Sci. Syst. (2009)
P.M. Newman, J.J. Leonard, R. Rikoski: Towards constant-time SLAM on an autonomous underwater vehicle using synthetic aperture sonar, 11th Int. Symp. Robotics Res. (2003)
M.A. Paskin: Thin junction tree filters for simultaneous localization and mapping, Int. Jt. Conf. Artif. Intell. (IJCAI) (Morgan Kaufmann, New York 2003) pp. 1157–1164
S.B. Williams: Efficient Solutions to Autonomous Mapping and Navigation Problems, Ph.D. Thesis (ACFR Univ. Sydney, Sydney 2001)
H. Johannsson, M. Kaess, M.F. Fallon, J.J. Leonard: Temporally scalable visual SLAM using a reduced pose graph, RSS WorkshopLong-term Oper.Auton. Robotic Syst.Chang. Environ. (2012)
N. Carlevaris-Bianco, R.M. Eustice: Generic factor-based node marginalization and edge sparsification for pose-graph SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)
M. Kaess, F. Dellaert: Covariance recovery from a square root information matrix for data association, J. Robotics Auton. Syst. 57(12), 1198–1210 (2009)
H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robotics Res. 31(11), 1219–1230 (2012)
U. Frese, L. Schröder: Closing a million-landmarks loop, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)
J. McDonald, M. Kaess, C. Cadena, J. Neira, J.J. Leonard: Real-time 6-DOF multi-session visual SLAM over large scale environments, J. Robotics Auton. Syst. 61(10), 1144–1158 (2012)
H. Strasdat, J.M.M. Montiel, A.J. Davison: Real-time monocular SLAM: Why filter?, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)
P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments, Int. J. Robotics Res. 31(5), 647–663 (2012)
D. Nister, H. Stewenius: Scalable recognition with a vocabulary tree, Proc. IEEE Int. Conf. Comput. Vis.Pattern Recognit. (ICCVPR) (2006) pp. 2161–2168
R.A. Brooks: Aspects of mobile robot visual map making, Proc. Int. Symp.Robotics Res. (ISRR) (MIT Press, Cambridge 1984) pp. 287–293
H. Moravec: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Ph.D. Thesis (Stanford Univ., Stanford 1980)
N. Ayache, O. Faugeras: Building, registrating, and fusing noisy visual maps, Int. J. Robotics Res. 7(6), 45–65 (1988)
D. Kriegman, E. Triendl, T. Binford: Stereo vision and navigation in buildings for mobile robots, IEEE Trans. Robotics Autom. 5(6), 792–803 (1989)
L. Matthies, S. Shafer: Error modeling in stereo navigation, IEEE J. Robotics Autom. 3(3), 239–248 (1987)
S. Pollard, J. Porrill, J. Mayhew: Predictive feed-forward stereo processing, Alvey Vis. Conf. (1989) pp. 97–102
M. Smith, I. Baldwin, W. Churchill, R. Paul, P. Newman: The new college vision and laser data set, Int. J. Robotics Res. 28(5), 595–599 (2009)
M. Cummins, P.M. Newman: Appearance-only SLAM at large scale with FAB-MAP 2.0, Int. J. Robotics Res. 30(9), 1100–1123 (2010)
P.M. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner, R. Shade, D. Schroter, L. Murphy, W. Churchill, D. Cole, I. Reid: Navigating, recognising and describing urban spaces with vision and laser, Int, J. Robotics Res. 28, 11–12 (2009)
G. Sibley, C. Mei, I. Reid, P. Newman: Vast-scale outdoor navigation using adaptive relative bundle adjustment, Int. J. Robotics Res. 29(8), 958–980 (2010)
A. Davison, D. Murray: Mobile robot localisation using active vision, Eur. Conf. Comput. Vis. (ECCV) (1998) pp. 809–825
A.J. Davison, I. Reid, N. Molton, O. Stasse: MonoSLAM: Real-time single camera SLAM, IEEE Trans., Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)
R.O. Castle, G. Klein, D.W. Murray: Wide-area augmented reality using camera tracking and mapping in multiple regions, Comput. Vis. Image Underst. 115(6), 854–867 (2011)
E. Eade, T. Drummond: Unified loop closing and recovery for real time monocular SLAM, Br. Mach. Vis. Conf. (2008)
E. Eade, P. Fong, M.E. Munich: Monocular graph SLAM with complexity reduction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3017–3024
K. Konolige, M. Agrawal: FrameSLAM: From bundle adjustment to real-time visual mapping, IEEE Trans. Robotics 24(5), 1066–1077 (2008)
D. Nister, O. Naroditsky, J. Bergen: Visual odometry for ground vehicle applications, J.Field Robotics 23(1), 3–20 (2006)
D. Scaramuzza, F. Fraundorfer: Visual odometry. Part I: The first 30 years and fundamentals, IEEE Robotics Autom. Mag. 18(4), 80–92 (2011)
F. Fraundorfer, D. Scaramuzza: Visual odometry. Part II: Matching, robustness, optimization, and applications, IEEE Robotics Autom. Mag. 19(2), 78–90 (2012)
A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, N. Roy: Visual odometry and mapping for autonomous flight using an RGB-D camera, Proc. Int. Symp. Robotics Res. (ISRR) (2011)
J. Sivic, A. Zisserman: Video Google: A text retrieval approach to object matching in videos, Int. Conf. Computer Vis. (ICCV) (2003) p. 1470
M. Cummins, P.M. Newman: Probabilistic appearance based navigation and loop closing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2042–2048
C. Cadena, D. Gálvez, F. Ramos, J.D. Tardós, J. Neira: Robust place recognition with stereo cameras, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010)
R.A. Newcombe, A.J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon: Kinectfusion: Real-time dense surface mapping and tracking, IEEE/ACM Int. Sym. Mixed Augment. Real. (ISMAR) (2011) pp. 127–136
J. Neira, A.J. Davison, J.J. Leonard: Guest editorial special issue on visual SLAM, IEEE Trans. Robotics 24(5), 929–931 (2008)
K. Konolige, J. Bowman: Towards lifelong visual maps, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1156–1163
K. Konolige, J. Bowman, J.D. Chen, P. Mihelich, M. Calonder, V. Lepetit, P. Fua: View-based maps, Int. J. Robotics Res. 29(8), 941–957 (2010)
G. Sibley, C. Mei, I. Reid, P. Newman: Planes, trains and automobiles – Autonomy for the modern robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 285–292
T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, J.B. McDonald: Robust real-time visual odometry for dense RGB-D mapping, IEEE Int. Conf.RoboticsAutom. (ICRA (2013)
R.A. Newcombe, S.J. Lovegrove, A.J. Davison: DTAM: Dense tracking and mapping in real-time, Int. Conf. Computer Vis. (ICCV) (2011) pp. 2320–2327
F. Steinbruecker, J. Sturm, D. Cremers: Real-time visual odometry from dense RGB-D images, WorkshopLive Dense Reconstr. Mov. Cameras Int. Conf.Comput. Vis. (ICCV) (2011)
H. Roth, M. Vona: Moving volume kinectfusion, Br. Mach. Vis. Conf. (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
- :
-
Deformation-based loop closure for Dense RGB-D SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/439
- :
-
Large-scale SLAM using the Atlas framework available from http://handbookofrobotics.org/view-chapter/46/videodetails/440
- :
-
Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/441
- :
-
Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/442
- :
-
Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/443
- :
-
Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/444
- :
-
Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/445
- :
-
Graph-based SLAM using TORO available from http://handbookofrobotics.org/view-chapter/46/videodetails/446
- :
-
Sparse pose adjustment available from http://handbookofrobotics.org/view-chapter/46/videodetails/447
- :
-
Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/449
- :
-
Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/450
- :
-
Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/451
- :
-
DTAM: Dense tracking and mapping in real-time available from http://handbookofrobotics.org/view-chapter/46/videodetails/452
- :
-
MonoSLAM: Real-time single camera SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/453
- :
-
SLAM++: Simultaneous localisation and mapping at the level of objects available from http://handbookofrobotics.org/view-chapter/46/videodetails/454
- :
-
Extended Kalman filter SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/455
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Stachniss, C., Leonard, J.J., Thrun, S. (2016). Simultaneous Localization and Mapping. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)