Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simultaneous Localization and Mapping

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides a comprehensive introduction in to the simultaneous localization and mapping problem, better known in its abbreviated form as GlossaryTerm

SLAM

. SLAM addresses the main perception problem of a robot navigating an unknown environment. While navigating the environment, the robot seeks to acquire a map thereof, and at the same time it wishes to localize itself using its map. The use of SLAM problems can be motivated in two different ways: one might be interested in detailed environment models, or one might seek to maintain an accurate sense of a mobile robot’s location. SLAM serves both of these purposes.

We review the three major paradigms from which many published methods for SLAM are derived: (1) the extended Kalman filter (GlossaryTerm

EKF

); (2) particle filtering; and (3) graph optimization. We also review recent work in three-dimensional (GlossaryTerm

3-D

) SLAM using visual and red green blue distance-sensors (GlossaryTerm

RGB-D

), and close with a discussion of open research problems in robotic mapping.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

DCS:

dynamic covariance scaling

DOF:

degree of freedom

EKF:

extended Kalman filter

fastSLAM:

fast simultaneous localization and mapping

GPS:

global positioning system

GPU:

graphics processing unit

ICP:

iterative closest point

PCL:

point cloud library

PTAM:

parallel tracking and mapping

RGB-D:

red green blue distance

SAM:

smoothing and mapping

SFM:

structure from motion

SGD:

stochastic gradient descent

SLAM:

simultaneous localization and mapping

SSA:

sparse surface adjustment

References

  1. C.F. Gauss: Theoria Motus Corporum Coelestium (Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections) (Perthes and Bessen, Hamburg 1809), Republished in 1857 and by Dover in 1963

    Google Scholar 

  2. D.C. Brown: The bundle adjustment – Progress and prospects, Int. Arch. Photogramm. 21(3), 3:3–3:35 (1976)

    Google Scholar 

  3. G. Konecny: Geoinformation: Remote Sensing, Photogrammetry and Geographical Information Systems (Taylor Francis, London 2002)

    Book  Google Scholar 

  4. B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon: Bundle adjustment – A modern synthesis, Lect. Notes Comput. Sci. 62, 298–372 (2000)

    Article  Google Scholar 

  5. R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  6. T. Bailey, H.F. Durrant-Whyte: Simultaneous localisation and mapping (SLAM): Part II, Robotics Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  7. H.F. Durrant-Whyte, T. Bailey: Simultaneous localisation and mapping (SLAM): Part I, Robotics Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  8. G. Grisetti, C. Stachniss, W. Burgard: Nonlinear constraint network optimization for efficient map learning, IEEE Trans. Intell. Transp. Syst. 10(3), 428–439 (2009)

    Article  Google Scholar 

  9. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge, 2005)

    MATH  Google Scholar 

  10. R. Smith, M. Self, P. Cheeseman: A stochastic map for uncertain spatial relationships, Proc. Int. Symp. Robotics Res. (ISRR) (MIT Press, Cambridge 1988) pp. 467–474

    Google Scholar 

  11. R. Smith, M. Self, P. Cheeseman: Estimating uncertain spatial relationships in robotics. In: Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong (Springer Verlag, Berlin, Heidelberg 1990) pp. 167–193

    Chapter  Google Scholar 

  12. P. Moutarlier, R. Chatila: Stochastic multisensory data fusion for mobile robot location and environment modeling, 5th Int. Symp.Robotics Res. (ISRR) (1989) pp. 207–216

    Google Scholar 

  13. P. Moutarlier, R. Chatila: An experimental system for incremental environment modeling by an autonomous mobile robot, 1st Int. Sym. Exp. Robotics (ISER) (1990)

    Google Scholar 

  14. R. Kalman: A new approach to linear filtering and prediction problems, J. Fluids 82, 35–45 (1960)

    MathSciNet  Google Scholar 

  15. A.M. Jazwinsky: Stochastic Processes and Filtering Theory (Academic, New York 1970)

    Google Scholar 

  16. M.G. Dissanayake, P.M. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba: A solution to the simultaneous localization and map building (SLAM) Problem, IEEE Trans. Robotics Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  17. J. Neira, J. Tardos, J. Castellanos: Linear time vehicle relocation in SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 427–433

    Google Scholar 

  18. J. Neira, J.D. Tardos: Data association in stochastic mapping using the joint compatibility test, IEEE Trans. Robotics Autom. 17(6), 890–897 (2001)

    Article  Google Scholar 

  19. G.D. Tipaldi, M. Braun, K.O. Arras: Flirt: interest regions for 2D range data with applications to robot navigation, Proc. Int. Symp.Exp. Robotics (ISER) (2010)

    Google Scholar 

  20. G.D. Tipaldi, L. Spinello, W. Burgard: Geometrical flirt phrases for large scale place recognition in 2D range data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  21. T. Bailey: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments, Ph.D. Thesis (Univ. of Sydney, Sydney 2002)

    Google Scholar 

  22. J.J. Leonard, R.R. Rikoski, P.M. Newman, M. Bosse: Mapping partially observable features from multiple uncertain vantage points, Int. J. Robotics Res. 21(10), 943–975 (2002)

    Article  Google Scholar 

  23. A.J. Davison: Real-time simultaneous localisation and mapping with a single camera, Proc. IEEE 9th Int. Conf. Comput. Vis. (2003) pp. 1403–1410

    Google Scholar 

  24. J.M.M. Montiel, J. Civera, A.J. Davison: Unified inverse depth parametrization for monocular SLAM, Robotics Sci. Syst., Vol. 1 (2006)

    Google Scholar 

  25. M. Bosse, P.M. Newman, J. Leonard, S. Teller: Simultaneous localization and map building in large-scale cyclic environments using the Atlas Framework, Int. J. Robotics Res. 23(12), 1113–1139 (2004)

    Article  Google Scholar 

  26. J. Nieto, T. Bailey, E. Nebot: Scan-SLAM: Combining EKF-SLAM and scan correlation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005)

    Google Scholar 

  27. J. Guivant, E. Nebot: Optimization of the simultaneous localization and map building algorithm for real time implementation, IEEE Trans. Robotics. Autom. 17(3), 242–257 (2001)

    Article  Google Scholar 

  28. J.J. Leonard, H. Feder: A computationally efficient method for large-scale concurrent mapping and localization, Proc. 9th Int. Symp. Robotics Res. (ISRR), ed. by J. Hollerbach, D. Koditschek (1999) pp. 169–176

    Google Scholar 

  29. J.D. Tardós, J. Neira, P.M. Newman, J.J. Leonard: Robust mapping and localization in indoor environments using sonar data, Int. J. Robotics Res. 21(4), 311–330 (2002)

    Article  Google Scholar 

  30. S.B. Williams, G. Dissanayake, H.F. Durrant-Whyte: Towards multi-vehicle simultaneous localisation and mapping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2743–2748

    Google Scholar 

  31. R.M. Eustice, H. Singh, J.J. Leonard: Exactly sparse delayed-state filters for view-based SLAM, IEEE Trans. Robotics 22(6), 1100–1114 (2006)

    Article  Google Scholar 

  32. V. Ila, J.M. Porta, J. Andrade-Cetto: Information-based compact pose SLAM, IEEE Trans. Robotics 26(1), 78–93 (2010)

    Article  Google Scholar 

  33. S. Thrun, D. Koller, Z. Ghahramani, H.F. Durrant-Whyte, A.Y. Ng: Simultaneous mapping and localization with sparse extended information filters, Proc.5th Int. Workshop Algorithmic Found.Robotics, ed. by J.-D. Boissonnat, J. Burdick, K. Goldberg, S. Hutchinson (2002)

    Google Scholar 

  34. M.R. Walter, R.M. Eustice, J.J. Leonard: Exactly sparse extended information filters for feature-based SLAM, Int. J. Robotics Res. 26(4), 335–359 (2007)

    Article  Google Scholar 

  35. T. Bailey, J. Nieto, J. Guivant, M. Stevens, E. Nebot: Consistency of the EKF-SLAM algorithm, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2006) pp. 3562–3568

    Google Scholar 

  36. S. Huang, G. Dissanayake: Convergence and consistency analysis for extended Kalman filter based SLAM, IEEE Trans. Robotics 23(5), 1036–1049 (2007)

    Article  Google Scholar 

  37. G.P. Huang, A.I. Mourikis, S.I. Roumeliotis: Observability-based Rules for Designing Consistent EKF SLAM Estimators, Int. J. Robotics Res. 29, 502–528 (2010)

    Article  Google Scholar 

  38. N. Metropolis, S. Ulam: The Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  39. D. Blackwell: Conditional expectation and unbiased sequential estimation, Ann. Math. Stat. 18, 105–110 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.R. Rao: Information and accuracy obtainable in estimation of statistical parameters, Bull. Calcutta Math. Soc. 37(3), 81–91 (1945)

    MathSciNet  Google Scholar 

  41. K. Murphy, S. Russel: Rao--Blackwellized particle filtering for dynamic Bayesian networks. In: Sequential Monte Carlo Methods in Practice, ed. by A. Docout, N. de Freitas, N. Gordon (Springer, Berlin 2001) pp. 499–516

    Chapter  Google Scholar 

  42. M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: A factored solution to the simultaneous localization and mapping problem, Proc. AAAI Natl. Conf.Artif. Intell. (2002)

    Google Scholar 

  43. J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo 1988)

    MATH  Google Scholar 

  44. J. Guivant, E. Nebot, S. Baiker: Autonomous navigation and map building using laser range sensors in outdoor applications, J. Robotics Syst. 17(10), 565–583 (2000)

    Article  MATH  Google Scholar 

  45. G. Grisetti, C. Stachniss, W. Burgard: Improved techniques for grid mapping with Rao-Blackwellized particle filters, IEEE Trans. Robotics 23, 34–46 (2007)

    Article  Google Scholar 

  46. D. Hähnel, D. Fox, W. Burgard, S. Thrun: A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003)

    Google Scholar 

  47. C. Stachniss, G. Grisetti, W. Burgard, N. Roy: Evaluation of gaussian proposal distributions for mapping with rao-blackwellized particle filters, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2007)

    Google Scholar 

  48. A. Eliazar, R. Parr: DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks, Proc. 16th Int. Jt. Conf. Artif. Intell. (IJCAI) (2003) pp. 1135–1142

    Google Scholar 

  49. A. Eliazar, R. Parr: DP-SLAM 2.0, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 2 (2004) pp. 1314–1320

    Google Scholar 

  50. G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, D. Nardi: Fast and accurate SLAM with Rao-Blackwellized particle filters, J. Robotics Auton. Syst. 55(1), 30–38 (2007)

    Article  Google Scholar 

  51. D. Roller, M. Montemerlo, S. Thrun, B. Wegbreit: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, Int. Jt. Conf. Artif. Intell. (IICAI) (Morgan Kaufmann, San Francisco 2003) pp. 1151–1156

    Google Scholar 

  52. R. van der Merwe, N. de Freitas, A. Doucet, E. Wan: The unscented particle filter, Proc. Adv. Neural Inform. Process. Syst. Conf. (2000) pp. 584–590

    Google Scholar 

  53. C. Stachniss, G. Grisetti, W. Burgard: Recovering particle diversity in a Rao-Blackwellized particle filter for SLAM after actively closing loops, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 655–660

    Google Scholar 

  54. F. Lu, E. Milios: Globally consistent range scan alignment for environmental mapping, Auton. Robots 4, 333–349 (1997)

    Article  Google Scholar 

  55. F. Dellaert: Square root SAM, Robotics Sci. Syst., ed. by S. Thrun, G. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005)

    Google Scholar 

  56. T. Duckett, S. Marsland, J. Shapiro: Learning globally consistent maps by relaxation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 3841–3846

    Google Scholar 

  57. T. Duckett, S. Marsland, J. Shapiro: Fast, on-line learning of globally consistent maps, Auton. Robots 12(3), 287–300 (2002)

    Article  MATH  Google Scholar 

  58. J. Folkesson, H.I. Christensen: Graphical SLAM: A self-correcting map, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 383–390

    Google Scholar 

  59. U. Frese, G. Hirzinger: Simultaneous localization and mapping – A discussion, Proc. IJCAI Workshop Reason. Uncertain.Robotics (2001) pp. 17–26

    Google Scholar 

  60. M. Golfarelli, D. Maio, S. Rizzi: Elastic correction of dead-reckoning errors in map building, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1998) pp. 905–911

    Google Scholar 

  61. J. Gutmann, K. Konolige: Incremental mapping of large cyclic environments, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (CIRA) (2000) pp. 318–325

    Google Scholar 

  62. G. Grisetti, R. Kümmerle, C. Stachniss, W. Burgard: A Tutorial on Graph-based SLAM, IEEE Trans.Intell. Transp. Syst. Mag. 2, 31–43 (2010)

    Article  Google Scholar 

  63. K. Konolige: Large-scale map-making, Proc. AAAI Natl. Conf. Artif. Intell. (MIT Press, Cambridge 2004) pp. 457–463

    Google Scholar 

  64. M. Montemerlo, S. Thrun: Large-scale robotic 3-D mapping of urban structures, Springer Tract. Adv. Robotics 21, 141–150 (2005)

    Article  Google Scholar 

  65. G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, C. Hertzberg: Hierarchical optimization on manifolds for online 2D and 3D mapping, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)

    Google Scholar 

  66. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, F. Dellaert: iSAM2: Incremental smoothing and mapping using the Bayes tree, Int. J. Robotics Res. 31, 217–236 (2012)

    Article  Google Scholar 

  67. M. Kaess, A. Ranganathan, F. Dellaert: iSAM: Incremental Smoothing and Mapping, IEEE Trans. Robotics 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  68. C. Estrada, J. Neira, J.D. Tardós: Hierarchical SLAM: Real-time accurate mapping of large environments, IEEE Trans. Robotics 21(4), 588–596 (2005)

    Article  Google Scholar 

  69. K. Ni, F. Dellaert: Multi-level submap based SLAM using nested dissection, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010)

    Google Scholar 

  70. M. Ruhnke, R. Kümmerle, G. Grisetti, W. Burgard: Highly accurate maximum likelihood laser mapping by jointly optimizing laser points and robot poses, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)

    Google Scholar 

  71. M. Ruhnke, R. Kümmerle, G. Grisetti, W. Burgard: Highly accurate 3D surface models by sparse surface adjustment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)

    Google Scholar 

  72. Y. Liu, S. Thrun: Results for outdoor-SLAM using sparse extended information filters, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)

    Google Scholar 

  73. N. Sünderhauf, P. Protzel: BRIEF-Gist – Closing the loop by simple means, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2011) pp. 1234–1241

    Google Scholar 

  74. N. Sünderhauf, P. Protzel: Switchable constraints for robust pose graph SLAM, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2012)

    Google Scholar 

  75. P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, W. Burgard: Robust map optimization using dynamic covariance scaling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  76. E. Olson: Recognizing places using spectrally clustered local matches, J. Robotics Auton. Syst. 57(12), 1157–1172 (2009)

    Article  Google Scholar 

  77. Y. Latif, C. Cadena Lerma, J. Neira: Robust loop closing over time, Robotics Sci. Syst. (2012)

    Google Scholar 

  78. E. Olson, P. Agarwal: Inference on networks of mixtures for robust robot mapping, Robotics Sci. Syst. (2012)

    Google Scholar 

  79. F. Dellaert: Factor graphs and GTSAM: A hands-on introduction, Tech. Rep. GT-RIM-CP & R-2012-002 (Georgia Tech, Atlanta 2012)

    Google Scholar 

  80. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard: G²o: A general framework for graph optimization, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)

    Google Scholar 

  81. D.M. Rosen, M. Kaess, J.J. Leonard: An incremental trust-region method for robust online sparse least-squares estimation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 1262–1269

    Google Scholar 

  82. L. Carlone, R. Aragues, J. Castellanos, B. Bona: A linear approximation for graph-based simultaneous localization and mapping, Robotics Sci. Syst. (2011)

    Google Scholar 

  83. G. Grisetti, R. Kümmerle, K. Ni: Robust optimization of factor graphs by using condensed measurements, Proc. IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2012)

    Google Scholar 

  84. S. Izadi, R.A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli, J. Shotton, A.J. Davison, A. Fitzgibbon: Kinectfusion: Real-time dynamic 3D surface reconstruction and interaction, ACM SIGGRAPH Talks (2011) p. 23

    Google Scholar 

  85. G. Klein, D. Murray: Parallel tracking and mapping for small AR workspaces, IEEEACM Int. Symp. Mixed Augment. Real. (ISMAR) (2007) pp. 225–234

    Google Scholar 

  86. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard: An evaluation of the RGB-D SLAM system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)

    Google Scholar 

  87. H. Strasdat, A.J. Davison, J.M.M. Montiel, K. Konolige: Double window optimisation for constant time visual SLAM, Int. Conf.Computer Vis. (ICCV) (2011)

    Google Scholar 

  88. A. Nüchter: 3D robot mapping, Springer Tract. Adv. Robotics 52 (2009)

    Google Scholar 

  89. U. Frese: Treemap: An $O(\log n)$ algorithm for indoor simultaneous localization and mapping, Auton. Robots 21(2), 103–122 (2006)

    Article  Google Scholar 

  90. G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent, Robotics Sci. Syst. (2007)

    Google Scholar 

  91. E. Olson, J.J. Leonard, S. Teller: Fast iterative alignment of pose graphs with poor initial estimates, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2006) pp. 2262–2269

    Google Scholar 

  92. T.M. Cover, J.A. Thomas: Elements of Information Theory (Wiley, New York 1991)

    Book  MATH  Google Scholar 

  93. E. Olson, J.J. Leonard, S. Teller: Spatially-adaptive learning rates for online incremental SLAM, Robotics Sci. Syst. (2007)

    Google Scholar 

  94. G. Grisetti, D. Lordi Rizzini, C. Stachniss, E. Olson, W. Burgard: Online constraint network optimization for efficient maximum likelihood map learning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)

    Google Scholar 

  95. M. Kaess, A. Ranganathan, F. Dellaert: Fast incremental square root information smoothing, Int. Jt. Conf.Artif. Intell. (ISCAI) (2007)

    Google Scholar 

  96. P. Agarwal, E. Olson: Evaluating variable reordering strategies for SLAM, Proc. IEEE/RSJ Int. Conf. Intel Robots Syst. (IROS) (2012)

    Google Scholar 

  97. K. Ni, D. Steedly, F. Dellaert: Tectonic SAM: exact, out-of-core, submap-based SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1678–1685

    Google Scholar 

  98. G. Sibley, C. Mei, I. Reid, P. Newman: Adaptive relative bundle adjustment, Robotics Sci. Syst. (2009)

    Google Scholar 

  99. P.M. Newman, J.J. Leonard, R. Rikoski: Towards constant-time SLAM on an autonomous underwater vehicle using synthetic aperture sonar, 11th Int. Symp. Robotics Res. (2003)

    Google Scholar 

  100. M.A. Paskin: Thin junction tree filters for simultaneous localization and mapping, Int. Jt. Conf. Artif. Intell. (IJCAI) (Morgan Kaufmann, New York 2003) pp. 1157–1164

    Google Scholar 

  101. S.B. Williams: Efficient Solutions to Autonomous Mapping and Navigation Problems, Ph.D. Thesis (ACFR Univ. Sydney, Sydney 2001)

    Google Scholar 

  102. H. Johannsson, M. Kaess, M.F. Fallon, J.J. Leonard: Temporally scalable visual SLAM using a reduced pose graph, RSS WorkshopLong-term Oper.Auton. Robotic Syst.Chang. Environ. (2012)

    Google Scholar 

  103. N. Carlevaris-Bianco, R.M. Eustice: Generic factor-based node marginalization and edge sparsification for pose-graph SLAM, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  104. M. Kaess, F. Dellaert: Covariance recovery from a square root information matrix for data association, J. Robotics Auton. Syst. 57(12), 1198–1210 (2009)

    Article  Google Scholar 

  105. H. Kretzschmar, C. Stachniss: Information-theoretic compression of pose graphs for laser-based SLAM, Int. J. Robotics Res. 31(11), 1219–1230 (2012)

    Article  Google Scholar 

  106. U. Frese, L. Schröder: Closing a million-landmarks loop, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006)

    Google Scholar 

  107. J. McDonald, M. Kaess, C. Cadena, J. Neira, J.J. Leonard: Real-time 6-DOF multi-session visual SLAM over large scale environments, J. Robotics Auton. Syst. 61(10), 1144–1158 (2012)

    Article  Google Scholar 

  108. H. Strasdat, J.M.M. Montiel, A.J. Davison: Real-time monocular SLAM: Why filter?, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010)

    Google Scholar 

  109. P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments, Int. J. Robotics Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  110. D. Nister, H. Stewenius: Scalable recognition with a vocabulary tree, Proc. IEEE Int. Conf. Comput. Vis.Pattern Recognit. (ICCVPR) (2006) pp. 2161–2168

    Google Scholar 

  111. R.A. Brooks: Aspects of mobile robot visual map making, Proc. Int. Symp.Robotics Res. (ISRR) (MIT Press, Cambridge 1984) pp. 287–293

    Google Scholar 

  112. H. Moravec: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Ph.D. Thesis (Stanford Univ., Stanford 1980)

    Google Scholar 

  113. N. Ayache, O. Faugeras: Building, registrating, and fusing noisy visual maps, Int. J. Robotics Res. 7(6), 45–65 (1988)

    Article  Google Scholar 

  114. D. Kriegman, E. Triendl, T. Binford: Stereo vision and navigation in buildings for mobile robots, IEEE Trans. Robotics Autom. 5(6), 792–803 (1989)

    Article  Google Scholar 

  115. L. Matthies, S. Shafer: Error modeling in stereo navigation, IEEE J. Robotics Autom. 3(3), 239–248 (1987)

    Article  Google Scholar 

  116. S. Pollard, J. Porrill, J. Mayhew: Predictive feed-forward stereo processing, Alvey Vis. Conf. (1989) pp. 97–102

    Google Scholar 

  117. M. Smith, I. Baldwin, W. Churchill, R. Paul, P. Newman: The new college vision and laser data set, Int. J. Robotics Res. 28(5), 595–599 (2009)

    Article  Google Scholar 

  118. M. Cummins, P.M. Newman: Appearance-only SLAM at large scale with FAB-MAP 2.0, Int. J. Robotics Res. 30(9), 1100–1123 (2010)

    Article  Google Scholar 

  119. P.M. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei, I. Posner, R. Shade, D. Schroter, L. Murphy, W. Churchill, D. Cole, I. Reid: Navigating, recognising and describing urban spaces with vision and laser, Int, J. Robotics Res. 28, 11–12 (2009)

    Google Scholar 

  120. G. Sibley, C. Mei, I. Reid, P. Newman: Vast-scale outdoor navigation using adaptive relative bundle adjustment, Int. J. Robotics Res. 29(8), 958–980 (2010)

    Article  Google Scholar 

  121. A. Davison, D. Murray: Mobile robot localisation using active vision, Eur. Conf. Comput. Vis. (ECCV) (1998) pp. 809–825

    Google Scholar 

  122. A.J. Davison, I. Reid, N. Molton, O. Stasse: MonoSLAM: Real-time single camera SLAM, IEEE Trans., Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  123. R.O. Castle, G. Klein, D.W. Murray: Wide-area augmented reality using camera tracking and mapping in multiple regions, Comput. Vis. Image Underst. 115(6), 854–867 (2011)

    Article  Google Scholar 

  124. E. Eade, T. Drummond: Unified loop closing and recovery for real time monocular SLAM, Br. Mach. Vis. Conf. (2008)

    Google Scholar 

  125. E. Eade, P. Fong, M.E. Munich: Monocular graph SLAM with complexity reduction, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 3017–3024

    Google Scholar 

  126. K. Konolige, M. Agrawal: FrameSLAM: From bundle adjustment to real-time visual mapping, IEEE Trans. Robotics 24(5), 1066–1077 (2008)

    Article  Google Scholar 

  127. D. Nister, O. Naroditsky, J. Bergen: Visual odometry for ground vehicle applications, J.Field Robotics 23(1), 3–20 (2006)

    Article  MATH  Google Scholar 

  128. D. Scaramuzza, F. Fraundorfer: Visual odometry. Part I: The first 30 years and fundamentals, IEEE Robotics Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  129. F. Fraundorfer, D. Scaramuzza: Visual odometry. Part II: Matching, robustness, optimization, and applications, IEEE Robotics Autom. Mag. 19(2), 78–90 (2012)

    Article  Google Scholar 

  130. A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, N. Roy: Visual odometry and mapping for autonomous flight using an RGB-D camera, Proc. Int. Symp. Robotics Res. (ISRR) (2011)

    Google Scholar 

  131. J. Sivic, A. Zisserman: Video Google: A text retrieval approach to object matching in videos, Int. Conf. Computer Vis. (ICCV) (2003) p. 1470

    Google Scholar 

  132. M. Cummins, P.M. Newman: Probabilistic appearance based navigation and loop closing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2042–2048

    Google Scholar 

  133. C. Cadena, D. Gálvez, F. Ramos, J.D. Tardós, J. Neira: Robust place recognition with stereo cameras, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010)

    Google Scholar 

  134. R.A. Newcombe, A.J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon: Kinectfusion: Real-time dense surface mapping and tracking, IEEE/ACM Int. Sym. Mixed Augment. Real. (ISMAR) (2011) pp. 127–136

    Google Scholar 

  135. J. Neira, A.J. Davison, J.J. Leonard: Guest editorial special issue on visual SLAM, IEEE Trans. Robotics 24(5), 929–931 (2008)

    Article  Google Scholar 

  136. K. Konolige, J. Bowman: Towards lifelong visual maps, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009) pp. 1156–1163

    Google Scholar 

  137. K. Konolige, J. Bowman, J.D. Chen, P. Mihelich, M. Calonder, V. Lepetit, P. Fua: View-based maps, Int. J. Robotics Res. 29(8), 941–957 (2010)

    Article  Google Scholar 

  138. G. Sibley, C. Mei, I. Reid, P. Newman: Planes, trains and automobiles – Autonomy for the modern robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 285–292

    Google Scholar 

  139. T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, J.B. McDonald: Robust real-time visual odometry for dense RGB-D mapping, IEEE Int. Conf.RoboticsAutom. (ICRA (2013)

    Google Scholar 

  140. R.A. Newcombe, S.J. Lovegrove, A.J. Davison: DTAM: Dense tracking and mapping in real-time, Int. Conf. Computer Vis. (ICCV) (2011) pp. 2320–2327

    Google Scholar 

  141. F. Steinbruecker, J. Sturm, D. Cremers: Real-time visual odometry from dense RGB-D images, WorkshopLive Dense Reconstr. Mov. Cameras Int. Conf.Comput. Vis. (ICCV) (2011)

    Google Scholar 

  142. H. Roth, M. Vona: Moving volume kinectfusion, Br. Mach. Vis. Conf. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill Stachniss .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Deformation-based loop closure for Dense RGB-D SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/439

:

Large-scale SLAM using the Atlas framework available from http://handbookofrobotics.org/view-chapter/46/videodetails/440

:

Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/441

:

Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/442

:

Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/443

:

Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/444

:

Graph-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/445

:

Graph-based SLAM using TORO available from http://handbookofrobotics.org/view-chapter/46/videodetails/446

:

Sparse pose adjustment available from http://handbookofrobotics.org/view-chapter/46/videodetails/447

:

Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/449

:

Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/450

:

Pose graph compression for laser-based SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/451

:

DTAM: Dense tracking and mapping in real-time available from http://handbookofrobotics.org/view-chapter/46/videodetails/452

:

MonoSLAM: Real-time single camera SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/453

:

SLAM++: Simultaneous localisation and mapping at the level of objects available from http://handbookofrobotics.org/view-chapter/46/videodetails/454

:

Extended Kalman filter SLAM available from http://handbookofrobotics.org/view-chapter/46/videodetails/455

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stachniss, C., Leonard, J.J., Thrun, S. (2016). Simultaneous Localization and Mapping. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics