Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiple Runs in the Simulation of Stochastic Systems Can Improve the Estimates of Equilibrium Expectations

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 442))

  • 522 Accesses

Abstract

In this paper, we show that when estimating equilibrium expectations by Monte-Carlo simulation, it is often better to use multiple runs. Specifically, instead of a single run of length T, one should use n runs, each of length \(T/n\). In particular, it is argued that if there is a good state to start the simulation in, multiple runs may be advantageous. To illustrate this, we use numerical examples. These examples are obtained by using deterministic methods, that is, methods based on probability calculus which avoid any random numbers. The paper builds on results of earlier papers that show that when good starting states are chosen, warm-up periods are not only useless, they are outright detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexopoulos, C., Goldman, D.: To batch or not to batch? ACM Trans. Model. Comput. Simul. 14(4), 76–214 (2004)

    Article  Google Scholar 

  2. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis, volume 57 of Stochastic Modelling and Applied Probability. Springer, New York (2007)

    Google Scholar 

  3. Franklin, W.W., White, K.P.: Stationarity tests and MSER-5: exploring the intuition behind mean-squared-error-reduction in detecting and correcting initialization bias. In: Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) Proceedings of the 2008 Winter Simulation Conference, pp. 541–546. The Institute of Electrical and Electronics Engineers, Inc. (2008)

    Google Scholar 

  4. Grassmann, W.K.: Optimal estimation of the expected number in an M/D/∞/ system. Oper. Res. 29(6), 1208–1211 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grassmann, W.K.: Initial bias and estimation error in discrete event simulation. In: Highland, H.G., Chao, Y.W., Madrigal, O. (eds.) Proceedings of the 1982 Winter Simulation Conference. pp, pp. 377–384. The Institute of Electrical and Electronics Engineers Inc, Piscataway, NY (1982)

    Google Scholar 

  6. Grassmann, W.K.: Means and variances of time averages in Markovian environments. Eur. J. Oper. Res. 31, 132–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grassmann, W.K.: Warm-up periods in simulation can be detrimental. Probab. Eng. Inf. Sci. 22, 415–429 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Grassmann, W.K.: Rethinking the initialization bias problem in steady-state discrete event simulation. In: Jain, S., Creasey, R.R., Himmelspach, J., White, K.P., Fu, M. (eds.) Proceedings of the 2011 Winter Simulation Conference. pp, pp. 593–599. The Institute of Electrical and Electronics Engineers Inc, Piscataway, NY (2011)

    Chapter  Google Scholar 

  9. Grassmann, W.K.: Factors affecting warm-up periods in discrete event simulation. Simulation 90(1), 11–23 (2014)

    Article  Google Scholar 

  10. Kelton, W.D.: Random initialization methods in simulation. IIE Trans. 21(4), 355–367 (1989)

    Article  Google Scholar 

  11. Madansky, A.: Optimal conditions for a simulation problem. Oper. Res. 24, 572–577 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. McNickle, D., Ewing, G.C., Pawlikowski, K.: Transient deletion and the quality of sequential steady-state simulation. In: Proceedings of the 21st European Conference on Modelling and Simulation, Prague, Czech Republic (2007)

    Google Scholar 

  13. Meisner, D., Wu, J., Wenisch, T.F.: Bighouse: a simulation infrastructure for data center systems. http://www.ece.umich.edu/cse/awards/pdfs/ispass12.pdf (2015). Accessed 31 Oct 2015

  14. Mokashi, A.C., Tejada, J.J., Yousefi, F., Wilson, J.R., Tafazzoli, A., Steiger, N.M.: Performance comarison of MSER-5 and N-Sart on the simulation start-up problem. In: Jahansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceeding of 2010 Simulation Conference, pp. 971–982. IEEE, Piscataway, NJ (2010)

    Google Scholar 

  15. Newell, G.F.: Applications of Queueing Theory, second edn. Chapman and Hall, London (1982)

    Google Scholar 

  16. Pasupathy, R., Schmeiser, B.: The initial transient in steady state point estimation: context, a biography, the MSE criterium, and the MSER statistic. In: Johansson, B., Jain, S., Montaya-Torres, J., Hugan, J., Yücesan, E. (eds.) Proceedings of the 2010 Winter Simulation Conference. pp, pp. 184–197. The Institute of Electrical and Electronics Engineers Inc, Piscataway, NY (2010)

    Chapter  Google Scholar 

  17. Pawlikowski, K.: Steady-state simulation of queueing processes: a survey of problems and solutions. ACM Comput. Surv. 22(2), 123–170 (1990)

    Article  MathSciNet  Google Scholar 

  18. Tocher, K.D.: The Art of Simulation. English University Press, London (1963)

    Google Scholar 

  19. Whitt, W.: The efficiency of one long run versus independent replications in steady-state simulation. Manage. Sci. 37(6), 645–666 (1991)

    Article  MATH  Google Scholar 

  20. Wilson, J.R., Prisker, A.A.B.: Evaluation of startup policies in simulation experiments. Simulation 31, 79–88 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC of Canad, Discovery Grant 8112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Grassmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Grassmann, W. (2016). Multiple Runs in the Simulation of Stochastic Systems Can Improve the Estimates of Equilibrium Expectations. In: Obaidat, M., Kacprzyk, J., Ören, T., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-31295-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31295-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31294-1

  • Online ISBN: 978-3-319-31295-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics