Abstract
Gentzen solved the decision problem for intuitionistic propositional logic in his doctoral thesis [31]; this paper reviews some of the subsequent progress. Solutions to the problem are of importance both for general philosophical reasons and because of their use in implementations of proof assistants (such as Coq [4], widely used in software verification) based on intuitionistic logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A referee points out that this paper gave a classical provability interpretation of intuitionistic logic and an early syntactic proof of its faithfulness, a result conjectured by Gödel (and proved semantically by McKinsey and Tarski), as could usefully have been mentioned in [20].
- 2.
The final “p” in the name indicates “propositional”.
- 3.
He commented “Unfortunately, this method does not work for the second problem.”.
- 4.
As established using a cut of the conclusion with \(D, D\!\rightarrow \!P \Longrightarrow P\) and a cut with \(C, D\!\rightarrow \!P, P\!\rightarrow \!B \Longrightarrow (C \!\rightarrow \!D) \!\rightarrow \!B\).
- 5.
As realised by the author after too long a delay.
References
P. Abate, R. Goré, The Tableaux Work Bench, in Proceedings of IJCAR 2003. LNCS, vol. 2796 (Springer, 2003), pp. 230–236
R. Antonsen, A. Waaler, A labelled system for IPL with variable splitting, in Proceedings of CADE 2007. LNAI, vol. 4603 (Springer, 2007), pp. 132–146
A. Avellone, G. Fiorino, U. Moscato, An implementation of a \(O(n\ log\ n)\)-SPACE decision procedure for propositional intuitionistic logic, in 3rd International Workshop on the Implementation of Logics (Tbilisi, Georgia, Oct 2002)
B. Barras, S. Boutin, et al., The Coq proof assistant reference manual, version 6.2.1. Technical Report, INRIA (2000). http://www.ftp.inria.fr
E.W. Beth, The Foundations of Mathematics (North-Holland, 1959)
M. Bezem, T. Coquand, Automating coherent logic, in Proceedings of LPAR 2005. LNCS, vol. 3835 (Springer, 2005), pp. 246–260
K. Brünnler, M. Lange, Cut-free sequent systems for temporal logic. J. Logic Algebraic Program. 76, 216–225 (2008)
J. Caldwell, Decidability extracted: synthesizing “correct-by-construction” decision procedures from constructive proofs. Ph.D. dissertation (Cornell University, 1998)
L. Catach, TABLEAUX: a general theorem prover for modal logics. J. Autom. Reason. 7, 489–510 (1991)
G. Corsi, G. Tassi, Intuitionistic logic freed of all metarules. J. Symb. Logic 72, 1204–1218 (2007)
H. Curry, Foundations of Mathematical Logic (Dover Publications, 1963)
K. Dos̆en, A note on Gentzen’s decision procedure for intuitionistic propositional logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 33, 453–456 (1987)
A.G. Dragalin, Mathematical Intuitionism, Translations of Mathematical Monographs 67 (Trans. E. Mendelson). (American Mathematical Society, Providence, R.I., 1988)
R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic. J. Symb. Logic 57, 795–807 (1992)
R. Dyckhoff, Yet Another Proof Engine, MS (available from the author) (2014)
R. Dyckhoff, D. Kesner, S. Lengrand, Strong cut-elimination systems for Hudelmaier’s depth-bounded sequent calculus for implicational logic, in IJCAR 2006 Proceedings. LNCS, vol. 4130, pp. 347–361 (2006)
R. Dyckhoff, S. Lengrand, LJQ: a strongly focused calculus for intuitionistic logic, in Proceedings of Computability in Europe 2006. LNCS, vol. 3988 (Springer, 2006), pp. 173–185
R. Dyckhoff, S. Negri, Admissibility of structural rules for contraction-free systems of intuitionistic logic. J. Symb. Logic 65, 1499–1518 (2000)
R. Dyckhoff, S. Negri, Decision methods for linearly ordered Heyting algebras. Arch. Math. Log. 45, 411–422 (2006)
R. Dyckhoff, S. Negri, Proof analysis for intermediate logics. Arch. Math. Log. 51, 71–92 (2012)
R. Dyckhoff, S. Negri, Geometrisation of first-order logic, B. Symb. Logic 21, 123–163 (2015) Geometrisation of First-order Formulae, Submitted June 2014
R. Dyckhoff, S. Negri, Coherentisation of accessibility conditions in labelled sequent calculi, in Extended Abstract (2 pp.), Gentzen Systems and Beyond 2014, Informal Proceedings, ed. by R. Kuznets & G. Metcalfe. Vienna Summer of Logic, July 2014
U. Egly, S. Schmitt, On intuitionistic proof transformations, their complexity, and application to constructive program synthesis. Fundamenta Informaticae 39, 59–83 (1999)
M. Ferrari, C. Fiorentini, G. Fiorino, Simplification rules for intuitionistic propositional tableaux. ACM Trans. Comput. Log. 13, 14:1–14:23 (2012)
M. Ferrari, C. Fiorentini, G. Fiorino, Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models. J. Autom. Reason. 51, 129–149 (2013)
G. Fiorino, Decision procedures for propositional intermediate logics. Ph.D. thesis (Milan University, 2000)
M. Fitting, Intuitionistic Logic, Model Theory and Forcing (North-Holland, 1969)
M. Fitting, Proof Methods for Modal and Intuitionistic Logic (Reidel, 1983)
T. Franzén, Algorithmic aspects of intuitionistic propositional logic, I and II, SICS Research Reports R870X and R8906, 1987 and 1989
D. Garg, V. Genovese, S. Negri, Countermodels from sequent calculi in multi-modal logics, in Proceedings of LICS 2012 (IEEE, 2012), pp. 315–324
G. Gentzen, Untersuchungen über das logische Schliessen. Math. Zeitschrift 39, 176–210, 405–431 (1935)
R. Goré, Tableau methods for modal and temporal logics, in Handbook of Tableau Methods (Kluwer, 1999), pp. 297–396
R. Goré, J. Thomson, BDD-based automated reasoning in propositional non-classical logics: progress report, in Proceedings of PAAR-2012, EPiC Series 21 (EasyChair, 2013), pp 43–57
R. Goré, J. Thomson, J. Wu, A history-based theorem prover for intuitionistic propositional logic using global caching: IntHistGC system description, in Proceedings of IJCAR 2014. LNAI, vol. 8562 (Springer, 2014), pp. 262–268
J. Goubault-Larrecq, Implementing tableaux by decision diagrams, Unpublished note, Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, 47 pp. (1996)
H. Herbelin, Séquents qu’on calcule. Thèse de Doctorat, Université Paris 7 (1995)
A. Heuerding, M. Seyfried, H. Zimmermann, Efficient loop-check for backward proof search in some non-classical logics, in Proceedings of Tableaux 1996. LNAI, vol. 1071 (Springer, 1996), pp. 210–225
J. Howe, Two loop-detection mechanisms: a comparison, in Proceedings of Tableaux 1997. LNCS, vol. 1227 (Springer, 1997), pp. 188–200
J. Hudelmaier, A Prolog program for intuitionistic propositional logic, SNS-Bericht 88–28, Tübingen (1988)
J. Hudelmaier, Bounds for cut elimination in intuitionistic propositional logic. Arch. Math. Logic 31, 331–353 (1992)
J. Hudelmaier, An \(O(n\ log\ n)\)-SPACE decision procedure for intuitionistic propositional logic. J. Logic Comput. 3, 63–76 (1993)
O. Ketonen, Untersuchungen zum Prädikatenkalkül. Annales Acad. Sci. Fenn, Ser. A.I. 23 (1944)
S.C. Kleene, Introduction to Metamathematics (North-Holland, 1952)
D. Larchey-Wendling, D. Mery, D. Galmiche, STRIP: structural sharing for efficient proof-search, in Proceedings of IJCAR 2001. LNCS, vol. 2083 (Springer, 2001), pp. 696–700
P. Lincoln, A. Scedrov, N. Shankar, Linearizing intuitionistic implication. Ann. Pure Appl. Logic 60, 151–177 (1993)
O. Gasquet, A. Herzig, D. Longin, M. Sahade, LoTREC: logical tableaux research engineering companion, in Proceedings of Tableaux 2005. LNCS, vol. 3702 (Springer, 2005), pp. 318–322
S. Maehara, Eine Darstellung der Intuitionistischen Logik in der Klassischen. Nagoya Math. J. 7, 45–64 (1954)
S.Yu. Maslov, An inverse method of establishing deducibility in the classical predicate calculus. Dokl. Akad. Nauk. SSSR 159, 17–20 (translated as Soviet Math. Dokl. 5, 1420) (1964)
S. McLaughlin, F. Pfenning, Imogen: focusing the polarized inverse method for intuitionistic propositional logic, in Proceedings of LPAR’08. LNCS, vol. 5330 (Springer, 2008), pp. 174–181
G. Mints, Gentzen-type systems and resolution rule. Part I. LNCS 417, 198–231 (1990)
G. Mints, Complexity of subclasses of the intuitionistic propositional calculus, Programming Logic (ed. by B. Nordström). BIT 31, 64–69 (1992)
G. Mints, A Short Introduction to Intuitionistic Logic, CSLI Stanford Lecture Notes (Springer, 2000)
S. Negri, Proofs and countermodels in non-classical logics. Logica Universalis 8, 25–60 (2014)
K. Ono, Logische Untersuchungen über die Grundlagen der Mathematik. J. Fac. Sci. Imperial Univ. Tokyo. Section I. Math. Astron. Phys. Chem. 3, 329–389 (1938)
J. Otten, Clausal connection-based theorem proving in intuitionistic first-order logic, in Proceedings of Tableaux 2005. LNCS, vol. 3702 (Springer, 2005), pp 245–261
J. Otten, The ILTP Library. http://www.cs.uni-potsdam.de/ti/iltp/
L. Pinto, R. Dyckhoff, Loop-free construction of counter-models for intuitionistic propositional logic, Symposia Gaussiana, Conf. A, ed. by M. Behara, R. Fritsch, R.G. Lintz (Walter de Gruyter & Co, Berlin, 1995), pp. 225–232
J. von Plato, Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics Springer (to appear, 2016)
S.L. Read, Semantic Pollution and Syntactic Purity, R. Symb. Logic 8, 649–691 (2015)
D. Sahlin, T. Franzén, S. Haridi, An intuitionistic predicate logic theorem prover. J. Logic Comput. 2, 619–656 (1992)
G. Sambin, S. Valentini, The modal logic of provability. The sequential approach. J. Philos. Logic 11, 311–342 (1982)
R. Schmidt, D. Tishkovsky, Automated synthesis of tableau calculi. Logical Methods Comput. Sci. 7, 32 (2011)
K. Schütte, Vollstandige Systeme modaler und intuitionistischer Logik, Ergebnisse der Mathematik (Springer, 1968)
W. Sieg, S. Cittadini, Normal natural deduction proofs (in non-classical logics), in LNAI 2605 (Springer, 2005), pp. 169–191
R. Statman, Intuitionistic propositional logic is polynomial-space complete. Theoret. Comput. Sci. 9, 67–72 (1979)
T. Tammet, A resolution theorem prover for intuitionistic logic, in CADE-13. LNCS, vol. 1104 (Springer, 1996), pp. 2–16
N. Tennant, Autologic (Edinburgh University Press, 1992)
A.S. Troelstra, H. Schwichtenberg, Basic Proof Theory (Cambridge, 2001)
J. Underwood, A constructive completeness proof for intuitionistic propositional calculus, TR 90–1179, Department of Computer Science, Cornell University, 1990; also in Proceedings of the Workshop on Analytic Tableaux (Marseille, 1993)
N.N. Vorob’ev, The derivability problem in the constructive propositional calculus with strong negation. Doklady Akademii Nauk SSSR 85, 689–692 (1952)
N.N. Vorob’ev, A new algorithm for derivability in the constructive propositional calculus. AMS Transl. Ser. 2(94), 37–71 (1970)
A. Waaler, L. Wallen, Tableaux methods in intuitionistic logic, in Handbook of Tableaux Methods, ed. by M. D’Agostino, D.M. Gabbay, R. Hähnle, J. Posegga (Kluwer, Dordrecht, 1999), pp. 255–296
K. Weich, Improving proof search in intuitionistic propositional logic. Munich Ph.D. thesis, also from Logos Verlag Berlin (2001)
K. Weich, Decision procedures for intuitionistic propositional logic by program extraction, in Proceedings of Tableaux 1998. LNCS, vol. 1397 (Springer, 1998), pp. 292–306
Acknowledgments
Thanks are especially due to Gerhard Jäger and Helmut Schwichtenberg, whose scientific encouragement over the years has been substantial; and to Grisha Mints, now, alas, no longer with us, for helpful comments on historical matters—regrettably not all incorporated (thanks to a failure of technology).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dyckhoff, R. (2016). Intuitionistic Decision Procedures Since Gentzen. In: Kahle, R., Strahm, T., Studer, T. (eds) Advances in Proof Theory. Progress in Computer Science and Applied Logic, vol 28. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29198-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-29198-7_6
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-29196-3
Online ISBN: 978-3-319-29198-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)