Nothing Special   »   [go: up one dir, main page]

Skip to main content

Novel Positron Emitting Radiopharmaceuticals

Nuclear Oncology

Abstract

Over the past two decades, nuclear imaging has transformed cancer care. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide clinicians with functional and biochemical information about tumor tissue that complement the anatomical data acquired through magnetic resonance imaging (MRI) and computed tomography (CT). In this chapter, we highlight a number of emerging radiotracers in oncology that are currently employed in clinical trials in the USA and worldwide yet are awaiting regulatory approval in the USA. The radiotracers discussed range from small molecule probes that target cellular transport mechanisms and metabolic pathways to antibody-based agents that target cell-surface receptors. In order to help the reader appreciate the diversity and potential of each of these imaging agents, we present the underlying mechanisms of each agent’s targeting and trapping in tumor tissue and provide examples of clinical studies in diverse cancer types as well as descriptions of the utility of each tracer for staging and treatment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[123I]MIBG:

[123I]-meta-iodobenzylguanidine

[18F]DCFBC:

N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine

[18F]FACBC:

anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

[18F]FDG:

[18F]2-fluoro-2-deoxyglucose

[18F]FDHT:

16ß-[18F]fluoro-5-dihydrotestosterone

[18F]FDOPA:

L-3,4-dihydroxy-6-[18F]fluorophenylalanine

[18F]FES:

16a-[18F]fluoro-17ß-estradiol

[18F]FET:

O-(2-18F-fluoroethyl)-L-tyrosine

[18F]FGln:

4-[18F]-(2S,4R)fluoroglutamine

[18F]FLT:

3’-deoxy-3’-[18F]fluorothymidine

[18F]FMISO:

[18F]-fluoromisonidazole, 1-fluoro-3-(2-nitroimidazol-1-yl)-propan-2-ol

[18F]RGD-K5:

[18F]flotegatide-RGD

18F-AH111585:

[18F]fluciclatide

18F-alfatide II:

[18F]AlF-NOTA-E[PEG4-c(RGDfk)]2

64Cu-ATSM:

64Cu-diacetyl-bis(N4-methylsemicarbazone)

68Ga-PSMA:

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

AACD:

Aromatic amino acid decarboxylase

AR:

Androgen receptor

ASCT:

Alanine-serine-cysteine transporter

BB2:

Bombesin receptor subtype-2

BB2r:

Bombesin receptor subtype-2

ChoK:

Choline kinase

CNS:

Central nervous system

COMT:

Catechol-o-methyl transferase

CT:

Computed tomography

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

ER:

Estrogen receptor

FAS:

Fatty acid synthase

GRPr:

Gastrin-releasing peptide receptor

IMRT:

Intensity-modulated radiation therapy

LAT1:

L-type amino acid transporter 1

MRI:

Magnetic resonance imaging

MTC:

Medullary thyroid cancer

mTOR:

Mammalian target of rapamycin

NET:

Neuroendocrine tumor

NSCLC:

Non–small cell lung cancer

OC:

Octreotide

PEG:

Polyethylene glycol

PET:

Positron emission tomography

PET/MRI:

Positron emission tomography/magnetic resonance imaging

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RGD:

Arginine-glycine-aspartic acid

SHBG:

Steroid hormone-binding globulin

SPECT:

Single photon emission computed tomography

SSR:

Somatostatin receptor

SST:

Somatostatin

SSTr:

Somatostatin receptor

SUV:

Standardized uptake value

TATE:

Octreotate

TCA:

Tricarboxylic acid

TK:

Thymidine kinase

TOC:

Tyr3-octreotide

TTPmin :

Minimum time to peak

References

  1. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121:29–40.

    Article  CAS  PubMed  Google Scholar 

  2. Huang C, McConathy J. Radiolabeled amino acids for oncologic imaging. J Nucl Med. 2013;54:1007–10.

    Article  CAS  PubMed  Google Scholar 

  3. Nakanishi T, Tamai I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011;100:3731–50.

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol. 2005;15:254–66.

    Article  CAS  PubMed  Google Scholar 

  5. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci. 2007;104:19345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-Amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40:331–8.

    CAS  PubMed  Google Scholar 

  7. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.

    Article  CAS  PubMed  Google Scholar 

  8. Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 2014;270:849–56.

    Article  PubMed  Google Scholar 

  9. Sörensen J, Owenius R, Lax M, Johansson S.Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:394–402.

    Article  PubMed  CAS  Google Scholar 

  10. Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, et al. Characterization of primary prostate carcinoma by anti-1-amino-2-[18F] -fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) uptake. Am J Nucl Med Mol Imaging. 2013;3:85–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Oka S, Okudaira H, Ono M, Schuster D, Goodman M, Kawai K, et al. Differences in transport mechanisms of trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[Methyl-11C]Methionine and 2-Deoxy-2-[18F]Fluoro-d-Glucose. Mol Imaging Biol. 2014;16:322–9.

    Article  PubMed  Google Scholar 

  12. Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, et al. Anti-1-Amino-3-18F-Fluorocyclobutane-1-Carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55:1986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Långström B, Antoni G, Gullberg P, Halldin C, Malmborg P, Någren K, et al. Synthesis of L- and D-[Methyl-11C]Methionine. J Nucl Med. 1987;28:1037–40.

    PubMed  Google Scholar 

  14. Okubo S, Zhen H-N, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99:217–25.

    Article  CAS  PubMed  Google Scholar 

  15. Miyazawa H, Arai T, Iio M, Hara T. PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J Nucl Med. 1993;34:1886–91.

    CAS  PubMed  Google Scholar 

  16. Harris SM, Davis JC, Snyder SE, Butch ER, Vāvere AL, Kocak M, et al. Evaluation of the biodistribution of 11C-Methionine in children and young adults. J Nucl Med. 2013;54:1902–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25:629–33.

    Article  CAS  PubMed  Google Scholar 

  18. Glaudemans AWJM, Enting RH, Heesters MAAM, Dierckx RAJO, van Rheenen RWJ, Walenkamp AME, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–35.

    Article  CAS  PubMed  Google Scholar 

  19. Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging. 2008;35:65–71.

    Article  CAS  PubMed  Google Scholar 

  20. Heiss P, Mayer S, Herz M, Wester H-J, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]Fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med. 1999;40:1367–73.

    CAS  PubMed  Google Scholar 

  21. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med. 1999;40:205–12.

    CAS  PubMed  Google Scholar 

  22. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine. Appl Radiat Isot. 2002;57:853–6.

    Article  CAS  PubMed  Google Scholar 

  23. Langen K-J, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, et al. O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.

    Article  CAS  PubMed  Google Scholar 

  24. Pöpperl G, Kreth F, Mehrkens J, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–42.

    Article  PubMed  Google Scholar 

  25. Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56:9–15.

    Article  CAS  PubMed  Google Scholar 

  26. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305:137–8.

    Article  CAS  PubMed  Google Scholar 

  27. Vallabhajosula S. 18F-Labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med. 2007;37:400–19.

    Article  PubMed  Google Scholar 

  28. Balogova S, Talbot J-N, Nataf V, Michaud L, Huchet V, Kerrou K, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging. 2013;40:943–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minn H, Kemppainen J, Kauhanen S, Forsback S, Seppänen M. 18F-Fluorodihydroxyphenylalanine in the diagnosis of neuroendocrine tumors. PET Clin. 2014;9:27–36.

    Article  PubMed  Google Scholar 

  30. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.

    Article  CAS  PubMed  Google Scholar 

  31. Haug A, Auernhammer C, Wängler B, Tiling R, Schmidt G, Göke B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765–70.

    Article  CAS  PubMed  Google Scholar 

  32. Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55:1611–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pretze M, Wängler C, Wängler B. 6-[18F]Fluoro-l-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed Res Int. 2014;2014:674063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, et al. Production at the Curie level of no-carrier-added 6-18F-Fluoro-l-dopa. J Nucl Med. 2013;54:1154–61.

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan KN, DeBerardinis RJ. Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med. 2011;52:1005–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med. 2015;7:274ra17–ra17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, Ploessl K, et al. [18F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm. 2014;11:3852–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117–22.

    Article  CAS  PubMed  Google Scholar 

  39. Vāvere AL, Kridel SJ, Wheeler FB, Lewis JS. 1-11C-Acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med. 2008;49:327–34.

    Article  PubMed  CAS  Google Scholar 

  40. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for non-invasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation. 1990;81:1594–605.

    Article  CAS  PubMed  Google Scholar 

  41. Chirala SS, Wakil SJ. Structure and function of animal fatty acid synthase. Lipids. 2004;39:1045–53.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9:230–4.

    Article  CAS  PubMed  Google Scholar 

  43. Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett. 2015;25:4363–9.

    Article  CAS  PubMed  Google Scholar 

  44. Leisser A, Pruscha K, Ubl P, Wadsak W, Mayerhöfer M, Mitterhauser M, et al. Evaluation of fatty acid synthase in prostate cancer recurrence: SUV of [11C]acetate PET as a prognostic marker. Prostate. 2015;75:1760–7.

    Article  CAS  PubMed  Google Scholar 

  45. Prowatke I, Devens F, Benner A, Grone EF, Mertens D, Grone HJ, et al. Expression analysis of imbalanced genes in prostate carcinoma using tissue microarrays. Br J Cancer. 2006;96:82–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström P-U. Positron emission tomography with 11C-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 2006;67:996–1000.

    Article  PubMed  Google Scholar 

  47. Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. [11C]Acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med. 2013;54:699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clary GL, Tsai C-F, Guynn RW. Substrate specificity of choline kinase. Arch Biochem Biophys. 1987;254:214–21.

    Article  CAS  PubMed  Google Scholar 

  49. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-Acetate, and 18F- or 11C-Choline. J Nucl Med. 2011;52:81–9.

    Article  PubMed  Google Scholar 

  50. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23.

    Article  CAS  PubMed  Google Scholar 

  51. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med. 2008;113:895–904.

    Article  CAS  PubMed  Google Scholar 

  52. Contractor KB, Kenny LM, Stebbing J, Al-Nahhas A, Palmieri C, Sinnett D, et al. [11C]Choline positron emission tomography in estrogen receptor–positive breast cancer. Clin Cancer Res. 2009;15:5503–10.

    Article  CAS  PubMed  Google Scholar 

  53. Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, et al. Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 2010;70:2126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  55. Toyota Y, Miyake K, Kawai N, Hatakeyama T, Yamamoto Y, Toyohara J, et al. Comparison of 4′-[methyl-11C]thiothymidine (11C-4DST) and 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) PET/CT in human brain glioma imaging. EJNMMI Res. 2015;5:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Been LB, Suurmeijer AJH, Cobben DCP, Jager PL, Hoekstra HJ, Elsinga PH. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.

    Article  PubMed  Google Scholar 

  57. Boothman DA, Davis TW, Sahijdak WM. Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int J Radiat Oncol *Biol*Phys. 1994;30:391–8.

    Article  CAS  PubMed  Google Scholar 

  58. Soloviev D, Lewis D, Honess D, Aboagye E. [18F]FLT: An imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer. 2012;48:416–24.

    Article  CAS  PubMed  Google Scholar 

  59. Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, et al. [18F]-3′Deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res. 2011;17:7664–72.

    Article  CAS  PubMed  Google Scholar 

  60. Scheffler M, Zander T, Nogova L, Kobe C, Kahraman D, Dietlein M, et al. Prognostic impact of [18F]fluorothymidine and [18F]fluoro-d-glucose baseline uptakes in patients with lung cancer treated first-line with erlotinib. PLoS One. 2013;8:e53081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoshikawa H, Mori T, Kishino T, Yamamoto Y, Inamoto R, Akiyama K, et al. Changes in 18F-fluorothymidine and 18F-fluorodeoxyglucose positron emission tomography imaging in patients with head and neck cancer treated with chemoradiotherapy. Ann Nucl Med. 2013;27:363–70.

    Article  CAS  PubMed  Google Scholar 

  62. Bhoil A, Singh B, Singh N, Kashyap R, Watts A, Sarika S, et al. Can 3′-deoxy-3′-18F-fluorothymidine or 2′-deoxy-2′-18F-fluoro-d-glucose PET/CT better assess response after 3-weeks treatment by epidermal growth factor receptor kinase inhibitor, in non-small lung cancer patients? Preliminary results. Hell J Nucl Med. 2014;17:90–6.

    PubMed  Google Scholar 

  63. Lee TS, Ahn SH, Moon BS, Chun KS, Kang JH, Cheon GJ, et al. Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol. 2009;36:681–6.

    Article  CAS  PubMed  Google Scholar 

  64. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32:653–9.

    Article  PubMed  Google Scholar 

  65. Lee SJ, Kim SY, Chung JH, Oh SJ, Ryu JS, Hong YS, et al. Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3′-deoxy-3′-[18F]fluorothymidine flare. Biochem Pharmacol. 2010;80:1528–36.

    Article  CAS  PubMed  Google Scholar 

  66. Hong YS, Kim HO, K-p K, Lee J-L, Kim HJ, Lee SJ, et al. 3′-Deoxy-3′-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 2013;54:1209–16.

    Article  CAS  PubMed  Google Scholar 

  67. McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, et al. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One. 2013;8:e58938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun LC, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv. 2011;8:2–10.

    Article  CAS  PubMed  Google Scholar 

  69. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–98.

    Article  CAS  PubMed  Google Scholar 

  70. Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochima Acta. 2012;100:653–67.

    Article  CAS  Google Scholar 

  71. Afshar-Oromieh A, Wolf MB, Kratochwil C, Giesel FL, Combs SE, Dimitrakopoulou-Strauss A, et al. Comparison of 68 Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol. 2015;17:312–9.

    Article  CAS  PubMed  Google Scholar 

  72. Novruzov F, Aliyev JA, Jaunmuktane Z, Bomanji JB, Kayani I. The use of 68Ga-DOTATATE PET/CT for diagnostic assessment and monitoring of 177Lu-DOTATATE therapy in pituitary carcinoma. Clin Nucl Med. 2015;40:47–9.

    Article  PubMed  Google Scholar 

  73. Danthala M, Kallur KG, Prashant GR, Rajkumar K, Raghavendra Rao M. 177Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 years’ experience from a tertiary cancer care centre in India. Eur J Nucl Med Mol Imaging. 2014;41:1319–26.

    Article  CAS  PubMed  Google Scholar 

  74. Lococo F, Perotti G, Cardillo G, De Waure C, Filice A, Graziano P, et al. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid. Clin Nucl Med. 2015;40:e183–9.

    Article  PubMed  Google Scholar 

  75. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  76. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, et al. 64Cu-TETA-Octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42:213–21.

    CAS  PubMed  Google Scholar 

  77. Fani M, Braun F, Waser B, Beetschen K, Cescato R, Erchegyi J, et al. Unexpected sensitivity of sst2 antagonists to N-Terminal radiometal modifications. J Nucl Med. 2012;53:1481–9.

    Article  CAS  PubMed  Google Scholar 

  78. Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol. 2011;12:1101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984;309:30–3.

    Article  CAS  PubMed  Google Scholar 

  80. Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci U S A. 1985;82:8057–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  PubMed  Google Scholar 

  82. Liu S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug Chem. 2015;26:1413–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39:S126–38.

    Article  PubMed  CAS  Google Scholar 

  84. Cai H, Conti PS. RGD-based PET tracers for imaging receptor integrin α vβ3 expression. J Label Compd Radiopharm. 2013;56:264–79.

    Article  CAS  Google Scholar 

  85. Liu Z, Wang F. Development of RGD-based radiotracers for tumor imaging and therapy: translating from bench to bedside. Curr Mol Med. 2013;13:1487–505.

    Article  CAS  PubMed  Google Scholar 

  86. Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. BioMed Res Int. 2014;2014:871609.

    PubMed  PubMed Central  Google Scholar 

  87. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem. 2004;15:61–9.

    Article  CAS  PubMed  Google Scholar 

  88. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the αvβ 3-selective tracer 18F-Galacto-RGD in cancer patients. J Nucl Med. 2005;46:1333–41.

    CAS  PubMed  Google Scholar 

  89. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Non-invasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:0244–52.

    Article  CAS  Google Scholar 

  90. Doss M, Kolb HC, Zhang JJ, Bélanger MJ, Stubbs JB, Stabin MG, et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J Nucl Med. 2012;53:787–95.

    Article  PubMed  Google Scholar 

  91. Cho HJ, Lee JD, Park JY, Yun M, Kang WJ, Walsh JC, et al. First in human evaluation of a newly developed integrin binding PET tracer, 18F-RGD-K5 in patients with breast cancer: comparison with 18F-FDG uptake pattern and microvessel density. J Nucl Med. 2009;50:1910.

    CAS  Google Scholar 

  92. Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52:42S–55.

    Article  CAS  PubMed  Google Scholar 

  93. Kenny LM, Tomasi G, Turkheimer F, Larkin J, Gore M, Brock CS, et al. Preliminary clinical assessment of the relationship between tumor alphavbeta3 integrin and perfusion in patients studied with [18F]fluciclatide kinetics and [15O]H2O PET. EJNMMI Res. 2014;4:1–6.

    Article  CAS  Google Scholar 

  94. Dumont RA, Deininger F, Haubner R, Maecke HR, Weber WA, Fani M. Novel 64Cu- and 68Ga-labeled RGD conjugates show improved PET imaging of ανβ3 integrin expression and facile radiosynthesis. J Nucl Med. 2011;52:1276–84.

    Article  CAS  PubMed  Google Scholar 

  95. Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–68.

    Article  CAS  PubMed  Google Scholar 

  96. Bandari RP, Jiang Z, Reynolds TS, Bernskoetter NE, Szczodroski AF, Bassuner KJ, et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol. 2014;41:355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan Y, Chen X. Peptide heterodimers for molecular imaging. Amino Acids. 2011;41:1081–92.

    Article  CAS  PubMed  Google Scholar 

  98. Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, et al. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37.

    Article  CAS  PubMed  Google Scholar 

  99. Yu C, Pan D, Mi B, Xu Y, Lang L, Niu G, et al. 18F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur J Nucl Med Mol Imaging. 2015;42:2021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Minamimoto R, Jamali M, Barkhodari A, Mosci C, Mittra E, Shen B, et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging. 2015;42:1850–8.

    Article  CAS  PubMed  Google Scholar 

  101. Iagaru A, Mosci C, Shen B, Chin FT, Mittra E, Telli ML, et al. 18F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology. 2014;273:549–59.

    Article  PubMed  Google Scholar 

  102. Coy DH. Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem. 1989;264:14691–7.

    CAS  PubMed  Google Scholar 

  103. Zhang J, Li D, Lang L, Zhu Z, Wang L, Wu P, et al. 68Ga-NOTA-Aca-BBN(7-14) PET/CT in healthy volunteers and glioma patients. J Nucl Med. 2016;57:9–14.

    Article  CAS  PubMed  Google Scholar 

  104. Roivainen A, Kähkönen E, Luoto P, Borkowski S, Hofmann B, Jambor I, et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men. J Nucl Med. 2013;54:867–72.

    Article  CAS  PubMed  Google Scholar 

  105. Kähkönen E, Jambor I, Kemppainen J, Lehtiö K, Grönroos TJ, Kuisma A, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19:5434–43.

    Article  PubMed  CAS  Google Scholar 

  106. Borkowski S, Doehr O, Hultsch C, Weinig P, Elger B, Hegele-Hartung C, et al. Preclinical validation of the Ga-68-bombesin antagonist BAY 86-7548 for a phase I study in prostate cancer patients. J Nucl Med Meet Abstr. 2012;53:177.

    Google Scholar 

  107. Mather S, Nock B, Maina T, Gibson V, Ellison D, Murray I, et al. GRP receptor imaging of prostate cancer using [99mTc]Demobesin 4: a first-in-man study. Mol Imaging Biol. 2014;16:888–95.

    Article  PubMed  Google Scholar 

  108. Koo P, Kwak J, Pokharel S, Choyke P. Novel imaging of prostate cancer with MRI, MRI/US, and PET. Curr Oncol Rep. 2015;17:1–10.

    Article  Google Scholar 

  109. Franc BL, Lin H. Detection of recurrent non-Hodgkin lymphoma on In-111 capromab pendetide imaging. Clin Nucl Med. 2015;40:585–8.

    Article  PubMed  Google Scholar 

  110. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med. 2015;56:1003–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  113. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    Article  CAS  PubMed  Google Scholar 

  114. Pandit-Taskar N, O'Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:2093–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pandit-Taskar N, O’Donoghue JA, Divgi CR, Wills EA, Schwartz L, Gönen M, et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 2015;5:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Talbot JN, Gligorov J, Nataf V, Montravers F, Huchet V, Michaud L, et al. Current applications of PET imaging of sex hormone receptors with a fluorinated analogue of estradiol or of testosterone. Q J Nucl Med Mol Imaging. 2015;59:4–17.

    CAS  PubMed  Google Scholar 

  117. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC. Production and actions of estrogens. N Engl J Med. 2002;346:340–52.

    Article  CAS  PubMed  Google Scholar 

  118. Brinkmann AO, Blok LJ, de Ruiter PE, Doesburg P, Steketee K, Berrevoets CA, et al. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol. 1999;69:307–13.

    Article  CAS  PubMed  Google Scholar 

  119. Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P. Interactions of 16α-[18F]-fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol. 1999;26:905–13.

    Article  CAS  PubMed  Google Scholar 

  120. Peterson LM, Kurland BF, Link JM, Schubert EK, Stekhova S, Linden HM, et al. Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol. 2011;38:969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schöder H, Schmidtlein CR, Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16β-18F-Fluoro-5α-Dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gemignani ML, Patil S, Seshan VE, Sampson M, Humm JL, Lewis JS, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med. 2013;54:1697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJ. Clinical production, stability studies and PET imaging with 16-α-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci. 2007;10:256s–65.

    Article  CAS  PubMed  Google Scholar 

  124. Linden HM, Kurland BF, Peterson LM, Schubert EK, Gralow JR, Specht JM, et al. Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res. 2011;17:4799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Allott L, Smith G, Aboagye EO, Carroll L. PET imaging of steroid hormone receptor expression. Mol Imaging. 2015;14:11–22.

    Google Scholar 

  126. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.

    Article  CAS  PubMed  Google Scholar 

  127. Miyamoto H, Rahman MM, Chang C. Molecular basis for the antiandrogen withdrawal syndrome. J Cell Biochem. 2004;91:3–12.

    Article  CAS  PubMed  Google Scholar 

  128. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, et al. Tumor localization of 16β-18F-Fluoro-5α-Dihydrotestosterone versus 18F-FDG in patients with progressive. Metastatic Prostate Cancer J Nucl Med. 2004;45:366–73.

    CAS  PubMed  Google Scholar 

  129. Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Mol Imaging. 2005;32:344–50.

    Google Scholar 

  130. Vargas HA, Wassberg C, Fox JJ, Wibmer A, Goldman DA, Kuk D, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271:220–9.

    Article  PubMed  Google Scholar 

  131. Koukourakis MI, Giatromanolaki A, Sivridis E, Fezoulidis I. Cancer vascularization: implications in radiotherapy? Int J Radiat Oncol *Biol *Phys. 2000;48:545–53.

    Article  CAS  PubMed  Google Scholar 

  132. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.

    Article  CAS  PubMed  Google Scholar 

  133. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112:238–50.

    Article  CAS  PubMed  Google Scholar 

  134. Yamamoto Y, Maeda Y, Kawai N, Kudomi N, Aga F, Ono Y, et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun. 2012;33:621–5.

    Article  CAS  PubMed  Google Scholar 

  135. Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K, Rajendran J. Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother Oncol. 2011;101:369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Eschmann S-M, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.

    PubMed  Google Scholar 

  137. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49:1177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dearling JL, Lewis JS, Mullen GE, Rae MT, Zweit J, Blower PJ. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med. 1998;25:788–92.

    Article  CAS  PubMed  Google Scholar 

  139. Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem. 2002;7:249–59.

    Article  CAS  PubMed  Google Scholar 

  140. Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med. 1999;40:177–83.

    CAS  PubMed  Google Scholar 

  141. Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GED. Studies on the mechanism of hypoxic selectivity in Copper bis(Thiosemicarbazone) radiopharmaceuticals. J Med Chem. 2002;45:1420–31.

    Article  CAS  PubMed  Google Scholar 

  142. Blower PJ, Dilworth JR, Maurer RI, Mullen GD, Reynolds CA, Zheng Y. Towards new transition metal-based hypoxic selective agents for therapy and imaging. J Inorg Biochem. 2001;85:15–22.

    Article  CAS  PubMed  Google Scholar 

  143. Holland JP, Barnard PJ, Collison D, Dilworth JR, Edge R, Green JC, et al. Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of Copper radiopharmaceuticals. Chem Eur J. 2008;14:5890–907.

    Article  CAS  PubMed  Google Scholar 

  144. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  CAS  PubMed  Google Scholar 

  145. Lewis JS, Laforest R, Buettner TL, Song S-K, Fujibayashi Y, Connett JM, et al. Copper-64-diacetyl-bis(N 4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci U S A. 2001;98:1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aki T, Nakayama N, Yonezawa S, Takenaka S, Miwa K, Asano Y, et al. Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neuro-Oncol. 2012;109:115–22.

    Article  Google Scholar 

  147. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53:538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kwee SA, Lim J, Watanabe A, Kromer-Baker K, Coel MN. Prognosis Related to Metastatic Burden Measured by 18FFluorocholine PET/CT in Castration-Resistant Prostate Cancer. J Nucl Med. 2014;55:905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kenny LM, Contractor KB, Hinz R, Stebbing J, Palmieri C, Jiang J, et al. Reproducibility of [11C]Choline-positron emission tomography and effect of Trastuzumab. Clin Cancer Res. 2010;16:4236–45.

    Article  CAS  PubMed  Google Scholar 

  150. Rajendran JG, Krohn KA. F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med. 2015;45:151–62.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kawai N, Lin W, Cao W-D, Ogawa D, Miyake K, Haba R, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41:1870–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirkka Sarparanta , Dustin W. Demoin , Brendon E. Cook , Jason S. Lewis or Brian M. Zeglis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sarparanta, M., Demoin, D.W., Cook, B.E., Lewis, J.S., Zeglis, B.M. (2016). Novel Positron Emitting Radiopharmaceuticals. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_87-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_87-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Novel Positron-Emitting Radiopharmaceuticals
    Published:
    16 July 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-3

  2. Novel Positron Emitting Radiopharmaceuticals
    Published:
    23 November 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-2

  3. Original

    Emerging Radiopharmaceuticals in Clinical Oncology
    Published:
    12 September 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_87-1