Abstract
Universally composable multi-party computation is impossible without setup assumptions. Motivated by the ubiquitous use of secure hardware in many real world security applications, Katz (EUROCRYPT 2007) proposed a model of tamper-proof hardware as a UC-setup assumption. An important aspect of this model is whether the hardware token is allowed to hold a state or not. Real world examples of tamper-proof hardware that can hold a state are expensive hardware security modules commonly used in mainframes. Stateless, or resettable hardware tokens model cheaper devices such as smartcards, where an adversarial user can cut off the power supply, thus resetting the card’s internal state.
A natural question is how the stateful and the resettable hardware model compare in their cryptographic power, given that either the receiver or the sender of the token (and thus the token itself) might be malicious. In this work we show that any UC-functionality that can be implemented by a protocol using a single untrusted stateful hardware token can likewise be implemented using a single untrusted resettable hardware token, assuming only the existence of one-way functions.
We present two compilers that transform UC-secure protocols in the stateful hardware model into UC-secure protocols in the resettable hardware model. The first compiler can be proven secure assuming merely the existence of one-way functions. However, it (necessarily) makes use of computationally rather expensive non-black-box techniques. We provide an alternative second compiler that replaces the expensive non-black-box component of the first compiler by few additional seed OTs. While this second compiler introduces the seed OTs as additional setup assumptions, it is computationally very efficient.
N. Döttling—The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, within which part of this work was performed; and also from the CFEM research center (supported by the Danish Strategic Research Council) within which part of this work was performed. Supported by European Research Commission Starting Grant no. 279447.
D. Kraschewski—Part of work done while at Technion, Israel. Supported by the European Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement no. 259426 – ERC Cryptography and Complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)
Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.: Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 722–739. Springer, Heidelberg (2011)
Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and applications to resettable cryptography. In: STOC (2013)
Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)
Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC, pp. 235–244 (2000)
Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008)
Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) Universally composable oblivious transfer using a minimal number of stateless tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg (2014)
Chung, K.M., Pass, R., Seth, K.: Non-black-box simulation from one-way functions and applications to resettable security. In: STOC (2013)
Dachman-Soled, D., Fleischhacker, N., Katz, J., Lysyanskaya, A., Schröder, D.: Feasibility and infeasibility of secure computation with malicious PUFs. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 405–420. Springer, Heidelberg (2014)
Damgård, I., Scafuro, A.: Unconditionally secure and universally composable commitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 100–119. Springer, Heidelberg (2013)
Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Resettable cryptography in constant rounds – the case of zero knowledge. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 390–406. Springer, Heidelberg (2011)
Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: FOCS, pp. 251–260 (2009)
Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011)
Döttling, N., Kraschewski, D., Müller-Quade, J.: David & goliath oblivious affine function evaluation - asymptotically optimal building blocks for universally composable two-party computation from a single untrusted stateful tamper-proof hardware token. IACR Cryptology ePrint Archive 2012, p. 135 (2012)
Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statistically secure computation with bounded-resettable hardware tokens. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 319–344. Springer, Heidelberg (2015)
Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013)
Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg (2010)
Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)
Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: FOCS, pp. 678–687 (2011)
Goyal, V., Sahai, A.: Resettably secure computation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2009)
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)
Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)
Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC, pp. 33–43 (1989)
Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013)
Pappu, R.S.: Physical One-Way Functions. Ph.D. thesis, MIT (2001)
Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)
Prabhakaran, M., Sahai, A., Wadia, A.: Secure computation using leaky tokens. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 907–918. Springer, Heidelberg (2014)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)
Rührmair, U.: Oblivious transfer based on physical unclonable functions. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 430–440. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T. (2015). From Stateful Hardware to Resettable Hardware Using Symmetric Assumptions. In: Au, MH., Miyaji, A. (eds) Provable Security. ProvSec 2015. Lecture Notes in Computer Science(), vol 9451. Springer, Cham. https://doi.org/10.1007/978-3-319-26059-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-26059-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26058-7
Online ISBN: 978-3-319-26059-4
eBook Packages: Computer ScienceComputer Science (R0)