Abstract
To facilitate the research in visual attention analysis, we design and establish a new task-driven eye tracking dataset of 47 subjects. Inspired by psychological findings that human visual behavior is tightly dependent on the executed tasks, we carefully design specific tasks in accordance with the contents of 111 images covering various semantic categories, such as text, facial expression, texture, pose, and gaze. It results in a dataset of 111 fixation density maps and over 5,000 scanpaths. Moreover, we provide baseline results of thirteen state-of-the-art saliency models. Furthermore, we hold discussions on important clues on how tasks and image contents influence human visual behavior. This task-driven eye tracking dataset with the fixation density maps and scanpaths will be made publicly available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Proc. CVPR. IEEE (2009)
Ardizzone, E., Bruno, A., Mazzola, G.: Visual saliency by keypoints distribution analysis. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 691–699. Springer, Heidelberg (2011)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 414–429. Springer, Heidelberg (2012)
Borji, A., Tavakoli, H., Sihite, D., Itti, L.: Analysis of scores, datasets, and models in visual saliency prediction. In: Proc. ICCV. IEEE (2013)
Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Proc. NIPS (2005)
Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detectionl. In: Proc. CVPR. IEEE (2011)
Doshi, A., Trivedi, M.: Head and gaze dynamics in visual attention and context learning. In: Proc. CVPR Joint Workshop for Visual and Contextual Learning and Visual Scene Understanding. IEEE (2009)
Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: Proc. CVPR. IEEE (2011)
Ehinger, K., Hidalgo-Sotelo, B., Torralba, A., Oliva, A.: Modelling search for people in 900 scenes: a combined source model of eye guidance. Visual Cognition 17, 945–978 (2009)
Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision 13, 11 (2013)
Everingham, M., Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes challenge 2012 (voc2012) results (2012). http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
Foerster, R., Schneider, W.: Functionally sequenced scanpath similarity method (funcsim): Comparing and evaluating scanpath similarity based on a task’s inherent sequence of functional (action) units. Journal of Eye Movement Research, June 2013
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Proc. NIPS (2006)
Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: Proc. CVPR. IEEE (2007)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)
Jiang, M., Xu, J., Zhao, Q.: Saliency in crowd. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 17–32. Springer, Heidelberg (2014)
Johansson, R., Westling, G., Backstrom, A., Flanagan, J.: Eye-hand coordination in object manipulation. Journal of Neuroscience 21, 6917–6932 (2001)
Judd, T., Durand, F., Torralba, A.: A benchmark of computational models of saliency to predict human fixations. MIT Technical report (2012)
Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: Proc. ICCV. IEEE (2009)
Koostra, G., Boer, B., Schomaker, L.R.B.: Predicting eye fixations on complex visual stimuli using local symmetry. Cognitive Computation III, pp. 223–240, March 2011
Liu, H., Xu, D., Huang, Q., Li, W., Xu, M., Lin, S.: Semantically-based human scanpath estimation with hmms. In: Proc. ICCV. IEEE (1998)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. IEEE Trans. PAMI 33, 353–367 (2011)
Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. The Visual Computer 29, 381–392 (2013)
McLachlan, G., Peel, D.: Finite mixture models. John Wiley & Sons, Inc., Hoboken (2000)
Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: Proc. CVPR. IEEE (2011)
Papadopoulos, D.P., Clarke, A.D.F., Keller, F., Ferrari, V.: Training object class detectors from eye tracking data. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 361–376. Springer, Heidelberg (2014)
Ramanathan, S., Katti, H., Sebe, N., Kankanhalli, M., Chua, T.-S.: An eye fixation database for saliency detection in images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 30–43. Springer, Heidelberg (2010)
Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking protocols. In: Proc. Symp. ETRA. ACM (2000)
Vikram, T.N., Tscherepanow, M., Wrede, B.: A saliency map based on sampling an image into random rectangular regions of interest. Pattern Recognition 45, 3114–3124 (2012)
Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19, 1395–1407 (2006)
Wang, W., Chen, C., Wang, Y., Jiang, T., Fang, F., Yao, Y.: Simulating human saccadic scanpaths on natural images. In: Proc. CVPR. IEEE (2011)
Yarbus, A.: Eye Movements and Vision. Plenum Press, New York (1967)
Ye, B., Sugano, Y., Sato, Y.: Influence of stimulus and viewing task types on a learning-based visual saliency model. In: Proc. Symp. ETRA. ACM (2014)
Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: A bayesian framework for saliency using natural statistics. Journal of Vision 8, 7 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Xu, Y., Hong, X., He, Q., Zhao, G., Pietikäinen, M. (2015). A Task-Driven Eye Tracking Dataset for Visual Attention Analysis. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)