Nothing Special   »   [go: up one dir, main page]

Skip to main content

A First Framework for Top-K Cubes Queries

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9382))

Included in the following conference series:

Abstract

Data Warehouse (DW) and OLAP systems are effective solutions for the online analysis of large volumes of data structured as cubes. Usually organizations and enterprises require several cubes for their activities. In this context, we define a new kind of queries: “Top-k Cubes queries”. Top-K cubes queries allow searching the most relevant k-cubes among a collection of cubes. Then, in this paper we propose a first framework for Top-K cubes queries where queries are expressed in natural language to meet the easiness need of unskilled IT decision-makers. An implementation in a ROLAP architecture is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuchmann-Beauger, N., Aufaure, M.-A.: A natural language interface for data warehouse question answering. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 201–208. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Giacometti, A., Marcel, P., Negre, E.: A framework for recommending OLAP queries. In: 11th International Workshop on Data Warehousing and OLAP, DOLAP 2008, pp. 73–80. Proceedings of the ACM, New York (2008)

    Google Scholar 

  3. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: An approach to express and evaluate OLAP preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050–1064 (2011)

    Article  Google Scholar 

  4. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Preference-based recommendations for OLAP analysis. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 467–478. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Kozmina, N.: Adding recommendations to OLAP reporting tool. In: 5th International Conference on Enterprise Information Systems, vol. 1, pp. 169–176. ICEIS, France (2013)

    Google Scholar 

  6. Khemiri, R., Bentayeb, F.: FIMIOQR: Frequent itemsets mining for interactive OLAP query recommendation. In: The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications (DBKDA), pp. 9–14. DBKDA, Seville, Spain (2013)

    Google Scholar 

  7. Xin, D., Han, J., Cheng, H., Li, X.: Answering Top-k queries with multi-dimensional selections: The ranking cube approach. In: 32nd International Conference on Very Large Data Bases, pp. 463–474. Korea (2006)

    Google Scholar 

  8. Luo, Z.W., Ling, T.-W., Ang, C.-H., Lee, S.-Y., Cui, B.: Range top/bottom k queries in OLAP sparse data cubes. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, p. 678. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Loh, Z.X., Ling, T.-W., Ang, C.-H., Lee, S.-Y.: Adaptive method for range top-k queries in OLAP data cubes. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, p. 648. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Ding, B., Zhao, B., Lin, C.X., Han, J., Zhai, C.: Topcells: keyword-based search of Top-k aggregated documents in text cube. In: IEEE International Conference Data Eng. (ICDE), pp. 381–384 (2010)

    Google Scholar 

  11. Sagayaraj Francis, F., Xavier, P.P.: An effective method to answer OLAP queries using R*-Trees in distributed environment. Int. J. Comput. Appl. IJCA 107 (2014)

    Google Scholar 

  12. Bimonte, S., Pradel, M., Boffety, D., Tailleur, A., André, G., Bzikha, R., Chanet, J.-P.: A New sensor-based spatial OLAP architecture centered on an agricultural farm energy-use diagnosis tool. IJDSST 5(4), 1–20 (2013)

    Google Scholar 

  13. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón López, J.N., Naumann, F., Vossen, G.: Fusion cubes: towards self-service business intelligence. Int. J. Data Warehousing Min. IJDWM 9(2), 66–88. USA (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahma Djiroun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Djiroun, R., Bimonte, S., Boukhalfa, K. (2015). A First Framework for Top-K Cubes Queries. In: Jeusfeld, M., Karlapalem, K. (eds) Advances in Conceptual Modeling. ER 2015. Lecture Notes in Computer Science(), vol 9382. Springer, Cham. https://doi.org/10.1007/978-3-319-25747-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25747-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25746-4

  • Online ISBN: 978-3-319-25747-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics