Abstract
Functional connectivity, a data-driven modelling of spontaneous fluctuations in activity in spatially segregated brain regions, has emerged as a promising approach to generate hypotheses and features for prediction. The most widely used method for inferring functional connectivity is full correlation, but it cannot differentiate direct and indirect effects. This disadvantage is often avoided by fully partial correlation, but this method suffers from Berkson’s paradox. Some advanced methods, such as regularised inverse covariance and Bayes nets, have been applied. However, the connectivity inferred by these methods usually depends on crucial parameters. This paper suggests minimum partial correlation as a parameter-free measure of functional connectivity in fMRI. An algorithm, called elastic PC-algorithm, is designed to approximately calculate minimum partial correlation. Our experimental results show that the proposed method is more accurate than full correlation, fully partial correlation, regularised inverse covariance, network deconvolution algorithm and global silencing algorithm in most cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barzel, B., Barabási, A.L.: Network link prediction by global silencing of indirect correlations. Nature Biotechnology 31(8), 720–725 (2013)
Berkson, J.: Limitations of the application of fourfold table analysis to hospital data. Biometrics Bulletin, pp. 47–53 (1946)
Buckner, R.L., Krienen, F.M., Yeo, B.T.: Opportunities and limitations of intrinsic functional connectivity mri. Nature Neuroscience 16(7), 832–837 (2013)
Chenga, J., Greinera, R., Kellya, J., Bellb, D., Liub, W.: Learning bayesian networks from data: an information-theory based approach. Artificial Intelligence 137, 43–90 (2002)
Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. Journal of Machine Learning Research 15, 3741–3782 (2014)
Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)
Feizi, S., Marbach, D., Médard, M., Kellis, M.: Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology 31(8), 726–733 (2013)
Fisher, R.A.: The distribution of the partial correlation coefficient. Metron 3, 329–332 (1924)
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)
Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1(1), 13–36 (2011)
Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)
Hawellek, D.J., Hipp, J.F., Lewis, C.M., Corbetta, M., Engel, A.K.: Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proceedings of the National Academy of Sciences 108(47), 19066–19071 (2011)
Hermundstad, A.M., Bassett, D.S., Brown, K.S., Aminoff, E.M., Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C.M., Miller, M.B., et al.: Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences 110(15), 6169–6174 (2013)
Hinne, M., Ambrogioni, L., Janssen, R.J., Heskes, T., van Gerven, M.A.: Structurally-informed bayesian functional connectivity analysis. Neuroimage 86, 294–305 (2014)
Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., Benali, H.: Partial correlation for functional brain interactivity investigation in functional mri. Neuroimage 32(1), 228–237 (2006)
Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT press (2012)
Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press (2000)
Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex 22(1), 158–165 (2012)
Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)
Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT press (2000)
Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)
Turk-Browne, N.B.: Functional interactions as big data in the human brain. Science 342(6158), 580–584 (2013)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)
Wang, Z., Chan, L.: Learning bayesian networks from markov random fields: an efficient algorithm for linear models. ACM Transactions on Knowledge Discovery from Data 6(3), 10 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nie, L., Yang, X., Matthews, P.M., Xu, Z., Guo, Y. (2015). Minimum Partial Correlation: An Accurate and Parameter-Free Measure of Functional Connectivity in fMRI. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-23344-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23343-7
Online ISBN: 978-3-319-23344-4
eBook Packages: Computer ScienceComputer Science (R0)