Nothing Special   »   [go: up one dir, main page]

Skip to main content

SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9282))

Abstract

Ontology matching plays a crucial role to resolve semantic heterogeneities within knowledge-based systems. However, ontologies contain a massive number of concepts, resulting in performance impediments during the ontology matching process. With the increasing number of ontology concepts, there is a growing need to focus more on large-scale matching problems. To this end, in this paper, we come up with a new partitioning-based matching approach, where a new clustering method for partitioning concepts of ontologies is introduced. The proposed method, called SeeCOnt, is a seeding-based clustering technique aiming to reduce the complexity of comparison by only using clusters’ seed. In particular, SeeCOnt first identifies and determines the seeds of clusters based on the highest ranked concepts using a distribution condition, then the remaining concepts are placed into the proper cluster by defining and utilizing a membership function. The SeeCOnt method can improve the memory consuming problem in the large-scale matching problem, as well as it increases the matching quality. The experimental evaluation shows that SeeCOnt, compared with the top ten participant systems in OAEI, demonstrates acceptable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2014/.

  2. 2.

    https://jena.apache.org/.

  3. 3.

    http://ws.nju.edu.cn/falcon-ao.

  4. 4.

    http://alignapi.gforge.inria.fr.

  5. 5.

    http://oaei.ontologymatching.org.

References

  1. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in XML schema matching. Inf. Sci. 180(24), 4975–4998 (2010)

    Article  Google Scholar 

  3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  4. Do, H.H., Rahm, E.: Matching large schemas: approaches and evaluation. Inf. Syst. 32(6), 857–885 (2007)

    Article  Google Scholar 

  5. Doan, A., Halevy, A.: Semantic integration research in the database community: A brief survey. AAAI AI Mag. 25(1), 83–94 (2005)

    Google Scholar 

  6. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann, USA (2012)

    Google Scholar 

  7. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  9. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)

    Article  MathSciNet  Google Scholar 

  10. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1997)

    Article  Google Scholar 

  11. Graves, A., Adali, S., Hendler, J.: A method to rank nodes in an RDF graph. In: 7th International Semantic Web Conference (Posters and Demos) (2008)

    Google Scholar 

  12. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)

    Article  Google Scholar 

  13. Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partitioning of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292, pp. 251–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Hendler, J.: Agents and the semantic web. IEEE Intell. Syst. J. 16, 30–37 (2001)

    Article  Google Scholar 

  15. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. DKE 67, 140–160 (2008)

    Article  Google Scholar 

  16. Kermarrec, A.-M., Merrer, E.L., Sericola, B., Trdan, G.: Second order centrality: Distributed assessment of nodes criticity in complex networks. Comput. Commun. 34, 619–628 (2011)

    Article  Google Scholar 

  17. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Data-Centric Systems and Applications, vol. 5258, pp. 3–27. Springer, Heidelberg (2011)

    Google Scholar 

  19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  20. Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Semant. 7(4), 344–356 (2009)

    Article  Google Scholar 

  21. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  22. Shvaiko, P., Euzenat, J., Mao, M., Jimnez-Ruiz, E., Li, J., Ngonga, A.: editors. 9th International Workshop on Ontology Matching collocated with the 13th International Semantic Web Conference (ISWC 2014) (2014)

    Google Scholar 

  23. Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 99–105. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Hu, W., Zhao, Y., Qu, Y.: Partition-based block matching of large class hierarchies. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 72–83. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Zhong, Q., Li, H., Li, J., Xie, G.T., Tang, J., Zhou, L., Pan, Y.: A Gauss function based approach for unbalanced ontology matching. In: the ACM SIGMOD International Conference on Management of Data, (SIGMOD 2009), pp. 669–680 (2009)

    Google Scholar 

Download references

Acknowledgments

A. Algergawy’work is partly funded by DFG in the INFRA1 project of CRC AquaDiva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alsayed Algergawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Algergawy, A., Babalou, S., Kargar, M.J., Davarpanah, S.H. (2015). SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching. In: Tadeusz, M., Valduriez, P., Bellatreche, L. (eds) Advances in Databases and Information Systems. ADBIS 2015. Lecture Notes in Computer Science(), vol 9282. Springer, Cham. https://doi.org/10.1007/978-3-319-23135-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23135-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23134-1

  • Online ISBN: 978-3-319-23135-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics