Abstract
The application of soft robots can result in significant improvements within a number of areas where traditional robots are currently deployed. However, a challenging task when creating soft robots is to exert effective forces. This paper proposes to combine pneumatic and tendon-driven actuation mechanisms in an entirely soft outer sleeve realising a hybrid actuation principle, to realise a new type of robotic manipulator that can collapse entirely, extend along its main axis, bend along its main axis and vary its stiffness. The created robot arm is inherently flexible manufactured from sections that consist of an internal stretchable, air-tight balloon and an outer, non-stretchable sleeve preventing extension beyond a maximum volume. Tendons connected to the distal ends of the robot sections run along the outer sleeve allowing each section to bend in one direction when pulled. The results from our study show the capabilities of such a robot and the main advantages of the proposed technique compared to traditional, single-actuation type robot manipulators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ataollahi, A., Karim, R., Fallah, A.S., Rhode, K., Razavi, R., Seneviratne, L., Schaeffter, T., Althoefer, K.: 3-DOF MR-compatible multi-segment cardiac catheter steering mechanism. IEEE Transactions on Biomedical Engineering 99 (2013)
Bailly, Y., Amirat, Y.: Modeling and control of a hybrid continuum active catheter for aortic aneurysm treatment. In: IEEE International Conference on Robotics and Automation (2005)
Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: Model and optimal control theory. IEEE Transactions on Automation Control 43(1) (1998)
Buckingham, R.: Snake arm robots. Industrial Robot: An International Journal 29(3), 242–245 (2002)
Caldwell, D., Medrano-Cerda, G., Goodwin, M.: Control of pneumatic muscle actuators. IEEE Control Systems 15 (1995)
Cheng, N., Gopinath, A., Wang, L., Iagnemma, K., Hosoi, A.: Thermally tunable, self-healing composites for soft robotic applications. Macromolecular Materials and Engineering 299(11), 1279–1284 (2014)
Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering C 31, 1230–1239 (2011)
Cianchetti, M., Ranzani, T., Gerboni, G., de Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: Mechanical design and experimental charaterization of the single module. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)
Cieslak, R., Morecki, A.: Elephant trunk type elastic manipulator - a tool for bulk and liquid type materials transportation. Robotica 17, 11–16 (1999)
Godage, I., Nanayakkara, T., Caldwell, D.: Locomotion with continuum limbs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Gravagne, I., Rahn, C., Walker, I.D.: Large deflection dynamics and control for planar continuum robots. IEEE/ASME Transactions on Mechatronics 8(2), 299–307 (2003)
Gutfreund, Y., Flash, T., Fiorito, G., Hochner, B.: Patterns of arm muscle activation involved in octopus reaching movements. The Journal of Neuroscience 18(15), 5976–5987 (1998)
Jiang, A., Aste, T., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Granular jamming with hydraulic control. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2013)
Jiang, A., Secco, E., Wurdemann, H., Nanayakkara, T., Dasgupta, P., Athoefer, K.: Stiffness-controllable octopus-like robot arm for minimally invasive surgery. In: Workshop on New Technologies for Computer/Robot Assisted Surgery (2013)
Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Kim, Y., Cheng, S., Kim, S., Iagnemma, K.: Design of a tubular snake-like manipulator with stiffening capability by layer jamming. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinspiration and Biomimetics 4, 1–8 (2009)
Li, M., Ranzani, T., Sareh, S., Seneviratne, L., Dasgupta, P., Wurdemann, H., Althoefer, K.: Multi-fingered haptic palpation utilising granular jamming stiffness feedback actuators. Smart Materials and Structures 23(9), 095007 (2014)
Maghooa, F., Stilli, A., Althoefer, K., Wurdemann, H.: Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. In: IEEE International Conference on Robotics and Automation (2015)
McMahan, W., Jones, B., Walker, I.D.: Design and implementation of a multi-section continuum robot: Air-octor. In: IEEE/RJS International Conference on Intelligent Robots and Systems (2005)
Neppalli, S., Jones, B., McMahan, W., Chitrakaran, V., Walker, I., Pritts, M., Csencsits, M., Rahn, C., Grissom, M.: Octarm - a soft robotic manipulator. In: IROS (2007)
Noh, Y., Sareh, S., Back, J., Wurdemann, H., Ranzani, T., Secco, E., Faragasso, A., Liu, H., Althoefer, K.: A three-axial body force sensor for flexible manipulators. In: IEEE International Conference on Robotics and Automation (2014)
Noh, Y., Secco, E., Sareh, S., Wurdemann, H., Faragasso, A., Back, J., Liu, H., Sklar, E., Althoefer, K.: A continuum body force sensor designed for flexible surgical robotic devices. In: IEEE Engineering in Medicine and Biology Society (2014)
Ranzani, T., Gerboni, G., Cianchetti, M., Menciassi, A.: A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration & Biomimetics 10(3), 035008 (2015)
Sareh, S., Jiang, A., Faragasso, A., Noh, Y., Nanayakkara, T., Dasgupta, P., Seneviratne, L., Wurdemann, H., Althoefer, K.: Bio-inspired tactile sensor sleeve for surgical soft manipulators. In: ICRA (2014)
Shin, D., Sardellitti, I., Khatib, O.: A hybrid actuation approach for human-friendly robot design. In: IEEE International Conference on Robotics and Automation, pp. 1747–1752 (2008)
Stilli, A., Maghooa, F., Wurdemann, H., Althoefer, K.: A new bio-inspired, antagonistically actuated and stiffness controllable manipulator. In: Workshop on Computer/Robot Assisted Surgery (2014)
Stilli, A., Wurdemann, H., Althoefer, K.: Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In: IEEE/RJS International Conference on Intelligent Robots and Systems (2014)
Walker, I.D.: Robot strings: long, thin continuum robots. In: IEEE Aerospace Conference (2013)
Walker, I., Dawson, D., Flash, T., Grasso, F., Hanlon, R., Hochner, B., Kier, W., Pagano, C., Rahn, C., Zhang, Q.: Continuum robot arms inspired by cephalopods. In: UGVT VII (2005)
Wurdemann, H., Sareh, S., Shafti, A., Noh, Y., Faragasso, A., Liu, H., Hirai, S., Althoefer, K.: Embedded electro-conductive yarn for shape sensing of soft robotic manipulators. In: IEEE Engineering in Medicine and Biology Society (2015)
Xie, H., Jiang, A., Wurdemann, H., Liu, H., Seneviratne, L., Althoefer, K.: Magnetic resonance-compatible tactile force sensor using fibre optics and vision sensor. IEEE Sensors Journal 14(3), 829–838 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wurdemann, H.A., Stilli, A., Althoefer, K. (2015). Lecture Notes in Computer Science: An Antagonistic Actuation Technique for Simultaneous Stiffness and Position Control. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds) Intelligent Robotics and Applications. Lecture Notes in Computer Science(), vol 9246. Springer, Cham. https://doi.org/10.1007/978-3-319-22873-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-22873-0_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22872-3
Online ISBN: 978-3-319-22873-0
eBook Packages: Computer ScienceComputer Science (R0)