Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:

Abstract

Synchronization of large-scale networks is an important and fundamental computing primitive in parallel and distributed systems. The synchronization in cellular automata, known as firing squad synchronization problem (FSSP), has been studied extensively for more than fifty years, and a rich variety of synchronization algorithms has been proposed. In the present paper, we give a brief survey on a class of non-optimum-time 3n-step FSSP algorithms for synchronizing one-dimensional (1D) cellular automata of length n in \(3n \pm O(\log n)\) steps and present a comparative study of a relatively large-number of their implementations. We also propose two smallest-state, known at present, implementations of the 3n-step algorithm. The paper gives the first complete transition rules sets for the class of non-optimum-time 3n-step FSSP algorithms developed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Inf. Control 10, 22–42 (1967)

    Article  Google Scholar 

  • Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. of ACM 12(3), 388–394 (1965)

    Article  MATH  Google Scholar 

  • Gerken, H.-D.: Über Synchronisations-Probleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, pp. 50 (1987)

    Google Scholar 

  • Goto, E.: A minimal time solution of the firing squad problem. Dittoed Course Notes for Applied Mathematics, 298, pp. 52–59. Harvard University (1962)

    Google Scholar 

  • Herman, G.T.: Models for cellular interactions in development without polarity of individual cells. I. General description and the problem of universal computing ability. Int. J Syst. Sci. 2(3), 271–289 (1971)

    Article  MATH  Google Scholar 

  • Herman, G.T.: Models for cellular interactions in development without polarity of individual cells. II. Problems of synchronization and regulation. Int. J Syst. Sci. 3(2), 149–175 (1972)

    Article  MATH  Google Scholar 

  • Kobuchi, Y.: A note on symmetrical cellular spaces. Inf. Process. Lett. 25, 413–415 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theor. Comput. Sci. 50, 183–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Minsky, M.: Computation: Finite and Infinite Machines, pp. 28–29. Prentice Hall, New Jersey (1967)

    MATH  Google Scholar 

  • Moore, E.F.: The firing squad synchronization problem. In: Moore, F. (ed.) Sequential Machines: Selected Papers, pp. 213–214. Addison-Wesley, Reading MA. (1964)

    Google Scholar 

  • Sanders, P.: Massively parallel search for transition-tables of polyautomata. In: Proceedings of the VI International Workshop on Parallel Processing by Cellular Automata and Arrays, (Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.) Akademie, pp. 99–108 (1994)

    Google Scholar 

  • Szwerinski, H.: Symmetrical one-dimensional cellular spaces. Inf. Control 67, 163–172 (1982)

    Article  MathSciNet  Google Scholar 

  • Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Umeo, H., Kamikawa, N., Yunès, J.B.: A family of smallest symmetrical four-state firing squad synchronization protocols for ring arrays. Parallel Process. Lett. 19(2), 299–313 (2009)

    Article  MathSciNet  Google Scholar 

  • Umeo, H., Maeda, M., Hongyo, K.: A design of symmetrical six-state 3n-step firing squad synchronization algorithms and their implementations. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 157–168. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Vollmar, R.: Some remarks about the “Efficiency” of polyautomata. Int. J. Theor. Phys. 21(12), 1007–1015 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Waksman, A.: An optimum solution to the firing squad synchronization problem. Inf. Control 9, 66–78 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Yunès, J.-B.: Seven states solutions to the firing squad synchronization problem. Theor. Comput. Sci. 127(2), 313–332 (1994)

    Article  MATH  Google Scholar 

  • Yunès, J.-B.: An intrinsically non minimal-time Minsky-like 6-states solution to the firing squad synchronization problem. Theor. Inf. Appl. 42(1), 55–68 (2008)

    Article  MATH  Google Scholar 

  • Yunès, J.-B.: Simple new algorithms which solve the firing squad synchronization problem: a 7-states 4n-steps solution. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 316–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Yunès, J.B.: A 4-states algebraic solution to linear cellular automata synchronization. Inf. Process. Lett. 19(2), 71–75 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Umeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Umeo, H., Maeda, M., Sousa, A., Taguchi, K. (2015). A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics