Nothing Special   »   [go: up one dir, main page]

Skip to main content

Content-Adaptive Residual for Steganalysis

  • Conference paper
  • First Online:
Digital-Forensics and Watermarking (IWDW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9023))

Included in the following conference series:

Abstract

This paper employs the concept of the content-adaptive residual and presents a low-dimensional feature set for detecting the grayscale steganography in spatial domain. The testing image is first segmented into three kinds of areas, that is, the smooth, edge, and textural areas. Then, different pixel predictors are used to calculate the residuals responded to different areas. The yielded different co-occurrence matrices are finally collected as the steganalytic features. Experiments reported show that the proposed method is effective and yields good performances when detecting popular steganographic algorithms such as LSB matching, EA, and HUGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bas, P., Filler, T., Pevný, T.: Break our steganographic system: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machine (2012). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  3. Filler, T., Judas, J., Fridrich, J.: Minimizing embedding impact in steganography using trellis-coded quantization. In: Proceedings of SPIE, Electronic Imaging, Media Watermarking, Security II, vol. 754105 (2010)

    Google Scholar 

  4. Fridrich, J., Goljan, M., Du, R.: Detecting LSB steganography in color, and gray-scale images. IEEE Multimed. 8(4), 22–28 (2001)

    Article  Google Scholar 

  5. Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  6. Fridrich, J., Kodovský, J., Holub, V., Goljan, M.: Steganalysis of content-adaptive steganography in spatial domain. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 102–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Fridrich, J., Du, R.: Secure steganographic methods for palette images. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 47–60. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Harmsen, J.J., Pearlman, W.A.: Steganalysis of additive-noise modelable information hiding. In: Proceedings of SPIE-IS&T Electronic Imaging, pp. 131–142 (2003)

    Google Scholar 

  9. Holub, V., Fridrich, J.: Optimizing pixel predictors for steganalysis. In: Proceedings of SPIE, Electronic Imaging, Media Watermarking, Security and Forensics, vol. 830309 (2012)

    Google Scholar 

  10. Holub, V., Fridrich, J.J.: Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, pp. 234–239 (2012)

    Google Scholar 

  11. Kodovský, J., Fridrich, J., Holub, V.: On dangers of overtraining steganography to incomplete cover model. In: Proceedings of the 13th ACM Multimedia Workshop on Multimedia and Security, pp. 69–76 (2011)

    Google Scholar 

  12. Kodovský, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)

    Article  Google Scholar 

  13. Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 5(2), 201–214 (2010)

    Article  MathSciNet  Google Scholar 

  14. Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)

    Article  Google Scholar 

  15. Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  16. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Zhang, J., Cox, I.J., Doërr, G.: Steganalysis for LSB matching in images with high-frequency noise. In: IEEE 9th Workshop on Multimedia Signal Processing, pp. 385–388 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, X., Feng, B., Lu, W., Sun, W. (2015). Content-Adaptive Residual for Steganalysis. In: Shi, YQ., Kim, H., Pérez-González, F., Yang, CN. (eds) Digital-Forensics and Watermarking. IWDW 2014. Lecture Notes in Computer Science(), vol 9023. Springer, Cham. https://doi.org/10.1007/978-3-319-19321-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19321-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19320-5

  • Online ISBN: 978-3-319-19321-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics