Abstract
This paper employs the concept of the content-adaptive residual and presents a low-dimensional feature set for detecting the grayscale steganography in spatial domain. The testing image is first segmented into three kinds of areas, that is, the smooth, edge, and textural areas. Then, different pixel predictors are used to calculate the residuals responded to different areas. The yielded different co-occurrence matrices are finally collected as the steganalytic features. Experiments reported show that the proposed method is effective and yields good performances when detecting popular steganographic algorithms such as LSB matching, EA, and HUGO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bas, P., Filler, T., Pevný, T.: Break our steganographic system: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machine (2012). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
Filler, T., Judas, J., Fridrich, J.: Minimizing embedding impact in steganography using trellis-coded quantization. In: Proceedings of SPIE, Electronic Imaging, Media Watermarking, Security II, vol. 754105 (2010)
Fridrich, J., Goljan, M., Du, R.: Detecting LSB steganography in color, and gray-scale images. IEEE Multimed. 8(4), 22–28 (2001)
Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)
Fridrich, J., Kodovský, J., Holub, V., Goljan, M.: Steganalysis of content-adaptive steganography in spatial domain. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 102–117. Springer, Heidelberg (2011)
Fridrich, J., Du, R.: Secure steganographic methods for palette images. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 47–60. Springer, Heidelberg (2000)
Harmsen, J.J., Pearlman, W.A.: Steganalysis of additive-noise modelable information hiding. In: Proceedings of SPIE-IS&T Electronic Imaging, pp. 131–142 (2003)
Holub, V., Fridrich, J.: Optimizing pixel predictors for steganalysis. In: Proceedings of SPIE, Electronic Imaging, Media Watermarking, Security and Forensics, vol. 830309 (2012)
Holub, V., Fridrich, J.J.: Designing steganographic distortion using directional filters. In: IEEE International Workshop on Information Forensics and Security, pp. 234–239 (2012)
Kodovský, J., Fridrich, J., Holub, V.: On dangers of overtraining steganography to incomplete cover model. In: Proceedings of the 13th ACM Multimedia Workshop on Multimedia and Security, pp. 69–76 (2011)
Kodovský, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)
Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 5(2), 201–214 (2010)
Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285–287 (2006)
Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)
Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010)
Zhang, J., Cox, I.J., Doërr, G.: Steganalysis for LSB matching in images with high-frequency noise. In: IEEE 9th Workshop on Multimedia Signal Processing, pp. 385–388 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lin, X., Feng, B., Lu, W., Sun, W. (2015). Content-Adaptive Residual for Steganalysis. In: Shi, YQ., Kim, H., Pérez-González, F., Yang, CN. (eds) Digital-Forensics and Watermarking. IWDW 2014. Lecture Notes in Computer Science(), vol 9023. Springer, Cham. https://doi.org/10.1007/978-3-319-19321-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-19321-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19320-5
Online ISBN: 978-3-319-19321-2
eBook Packages: Computer ScienceComputer Science (R0)