Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering Ensemble Tracking

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

A key problem in visual tracking is how to handle the ambiguity in decision to locate the object effectively using the target appearance model with online update. We address this problem by incorporating sequential clustering and ensemble methods into the tracking system. In this paper, clustering is used for mining the potential historical structure in the parameter space and feature space. Then we fuse multiple weak hypotheses to construct a strong ensemble learner for object tracking. Different from previous methods for updating classifier ensemble in a fixed weak classifier pool frame-to-frame, the proposed ensemble method is taking three weak hypotheses into consideration: spatial object-part view, parameter space view, and feature space view. Specially, spatial object-part view represents the object by a collection of part models that are spatially related (e.g. tree-structure). Meanwhile, analyzing the latent group structure in the parameter space and feature space is essential to take full advantage of the historical data in the tracking process. Therefore, we propose a novel ensemble algorithm that fuses object-part predictor, parameter clustered predictors and feature clustered predictors together. Furthermore, the weights of different views are updated by the relative consistency between weak predictors and final ensemble tracker. The formulation is tested in a tracking-by-detection implementation. Extensive comparing experiments on challenging video sequences demonstrate the robustness and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. CSUR 38, 13 (2006)

    Article  Google Scholar 

  2. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE-TPAMI 99, 1 (2013)

    Google Scholar 

  3. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance models in visual object tracking. IEEE-TIST 4, 1–58 (2013)

    Google Scholar 

  4. Avidan, S.: Ensemble tracking. IEEE-TPAMI 29, 261–271 (2007)

    Article  Google Scholar 

  5. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990. IEEE (2009)

    Google Scholar 

  6. Grabner, H., Bischof, H.: On-line boosting and vision. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267. IEEE (2006)

    Google Scholar 

  7. Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270. IEEE (2011)

    Google Scholar 

  8. Zhang, L., van der Maaten, L.: Structure preserving object tracking. In: CVPR, pp. 1838–1845. IEEE (2013)

    Google Scholar 

  9. Bai, Q., Wu, Z., Sclaroff, S., Betke, M., Monnier, C.: Randomized ensemble tracking. In: ICCV. IEEE (2013)

    Google Scholar 

  10. Yu, Q., Dinh, T.B., Medioni, G.G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)

    Article  Google Scholar 

  12. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE-TPAMI 33, 2259–2272 (2011)

    Article  Google Scholar 

  13. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1, pp. 798–805. IEEE (2006)

    Google Scholar 

  14. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR, pp. 2042–2049. IEEE (2012)

    Google Scholar 

  15. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE-TPAMI 12, 993–1001 (1990)

    Article  Google Scholar 

  17. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1997)

    Google Scholar 

  18. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jennifer, A., David, M., Adrian, E., Chris, T.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–417 (1999)

    Article  MATH  Google Scholar 

  20. Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: ICCV. IEEE (2013)

    Google Scholar 

  21. Avidan, S.: Support vector tracking. IEEE-TPAMI 26, 1064–1072 (2004)

    Article  Google Scholar 

  22. Oza, N.C.: Online bagging and boosting. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2340–2345. IEEE (2005)

    Google Scholar 

  23. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: ICCVW, pp. 1393–1400. IEEE (2009)

    Google Scholar 

  24. Zhang, L., van der Maaten, L.: Preserving structure in model-free tracking. IEEE-TPAMI 36, 756–769 (2014)

    Article  Google Scholar 

  25. Zhong, B., Yao, H., Chen, S., Ji, R., Ji, X., Yuan, X., Liu, S., Gao, W.: Visual tracking via weakly supervised learning from multiple imperfect oracles. In: CVPR, pp. 1323–1330. IEEE (2010)

    Google Scholar 

  26. Kwon, J., Lee, K.: Tracking by sampling and integrating multiple trackers. IEEE-TPAMI PP, 1 (2013)

    Google Scholar 

  27. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  28. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. JMLR 7, 551–585 (2006)

    MATH  MathSciNet  Google Scholar 

  29. Wang, N., Yeung, D.: Ensemble-based tracking: aggregating crowdsourced structured time series data. In: ICML. JMLR. org (2014)

    Google Scholar 

  30. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276. IEEE (2010)

    Google Scholar 

  31. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418. IEEE (2013)

    Google Scholar 

  32. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE-TPAMI 34, 1409–1422 (2012)

    Article  Google Scholar 

  33. Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR (2013)

    Google Scholar 

  34. Paul, V., Michael, J.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. I–511. IEEE (2001)

    Google Scholar 

  35. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

Download references

Acknowledgement

This work was supported by 863 Program (2014AA015104), and National Natural Science Foundation of China (61273034 and 61332016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guibo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, G., Wang, J., Lu, H. (2015). Clustering Ensemble Tracking. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics