Abstract
A key problem in visual tracking is how to handle the ambiguity in decision to locate the object effectively using the target appearance model with online update. We address this problem by incorporating sequential clustering and ensemble methods into the tracking system. In this paper, clustering is used for mining the potential historical structure in the parameter space and feature space. Then we fuse multiple weak hypotheses to construct a strong ensemble learner for object tracking. Different from previous methods for updating classifier ensemble in a fixed weak classifier pool frame-to-frame, the proposed ensemble method is taking three weak hypotheses into consideration: spatial object-part view, parameter space view, and feature space view. Specially, spatial object-part view represents the object by a collection of part models that are spatially related (e.g. tree-structure). Meanwhile, analyzing the latent group structure in the parameter space and feature space is essential to take full advantage of the historical data in the tracking process. Therefore, we propose a novel ensemble algorithm that fuses object-part predictor, parameter clustered predictors and feature clustered predictors together. Furthermore, the weights of different views are updated by the relative consistency between weak predictors and final ensemble tracker. The formulation is tested in a tracking-by-detection implementation. Extensive comparing experiments on challenging video sequences demonstrate the robustness and effectiveness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. CSUR 38, 13 (2006)
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE-TPAMI 99, 1 (2013)
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A survey of appearance models in visual object tracking. IEEE-TIST 4, 1–58 (2013)
Avidan, S.: Ensemble tracking. IEEE-TPAMI 29, 261–271 (2007)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990. IEEE (2009)
Grabner, H., Bischof, H.: On-line boosting and vision. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267. IEEE (2006)
Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV, pp. 263–270. IEEE (2011)
Zhang, L., van der Maaten, L.: Structure preserving object tracking. In: CVPR, pp. 1838–1845. IEEE (2013)
Bai, Q., Wu, Z., Sclaroff, S., Betke, M., Monnier, C.: Randomized ensemble tracking. In: ICCV. IEEE (2013)
Yu, Q., Dinh, T.B., Medioni, G.G.: Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)
Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)
Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE-TPAMI 33, 2259–2272 (2011)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1, pp. 798–805. IEEE (2006)
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR, pp. 2042–2049. IEEE (2012)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE-TPAMI 12, 993–1001 (1990)
Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1997)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)
Jennifer, A., David, M., Adrian, E., Chris, T.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–417 (1999)
Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: ICCV. IEEE (2013)
Avidan, S.: Support vector tracking. IEEE-TPAMI 26, 1064–1072 (2004)
Oza, N.C.: Online bagging and boosting. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2340–2345. IEEE (2005)
Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: ICCVW, pp. 1393–1400. IEEE (2009)
Zhang, L., van der Maaten, L.: Preserving structure in model-free tracking. IEEE-TPAMI 36, 756–769 (2014)
Zhong, B., Yao, H., Chen, S., Ji, R., Ji, X., Yuan, X., Liu, S., Gao, W.: Visual tracking via weakly supervised learning from multiple imperfect oracles. In: CVPR, pp. 1323–1330. IEEE (2010)
Kwon, J., Lee, K.: Tracking by sampling and integrating multiple trackers. IEEE-TPAMI PP, 1 (2013)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, USA, vol. 1, pp. 281–297 (1967)
Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. JMLR 7, 551–585 (2006)
Wang, N., Yeung, D.: Ensemble-based tracking: aggregating crowdsourced structured time series data. In: ICML. JMLR. org (2014)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276. IEEE (2010)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418. IEEE (2013)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE-TPAMI 34, 1409–1422 (2012)
Yao, R., Shi, Q., Shen, C., Zhang, Y., van den Hengel, A.: Part-based visual tracking with online latent structural learning. In: CVPR (2013)
Paul, V., Michael, J.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. 1, pp. I–511. IEEE (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)
Acknowledgement
This work was supported by 863 Program (2014AA015104), and National Natural Science Foundation of China (61273034 and 61332016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhu, G., Wang, J., Lu, H. (2015). Clustering Ensemble Tracking. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-16814-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16813-5
Online ISBN: 978-3-319-16814-2
eBook Packages: Computer ScienceComputer Science (R0)