Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simplified Coalgebraic Trace Equivalence

  • Chapter
Software, Services, and Systems

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8950))

  • 999 Accesses

Abstract

The analysis of concurrent and reactive systems is based to a large degree on various notions of process equivalence, ranging, on the so-called linear-time/branching-time spectrum, from fine-grained equivalences such as strong bisimilarity to coarse-grained ones such as trace equivalence. The theory of concurrent systems at large has benefited from developments in coalgebra, which has enabled uniform definitions and results that provide a common umbrella for seemingly disparate system types including non-deterministic, weighted, probabilistic, and game-based systems. In particular, there has been some success in identifying a generic coalgebraic theory of bisimulation that matches known definitions in many concrete cases. The situation is currently somewhat less settled regarding trace equivalence. A number of coalgebraic approaches to trace equivalence have been proposed, none of which however cover all cases of interest; notably, all these approaches depend on explicit termination, which is not always imposed in standard systems, e.g. labelled transition systems. Here, we discuss a joint generalization of these approaches based on embedding functors modelling various aspects of the system, such as transition and braching, into a global monad; this approach appears to cover all cases considered previously and some additional ones, notably standard and probabilistic labelled transition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive systems: modelling, specification and verification. Cambridge University Press (2007)

    Google Scholar 

  2. Aczel, P.: Non-Well-Founded Sets. CSLI, Stanford (1988)

    Google Scholar 

  3. Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ. Carolin. 15, 589–602 (1974)

    Google Scholar 

  4. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press (1994)

    Google Scholar 

  5. Barr, M.: Coequalizers and free triples. Math. Zeitschr. 116, 307–322 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonchi, F., Bonsangue, M., Caltais, G., Rutten, J., Silva, A.: Final semantics for decorated traces. In: Mathematical Foundations of Programming Semantics, MFPS 2012. ENTCS, vol. 286, pp. 73–86. Elsevier (2012)

    Google Scholar 

  7. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1:7) (2013)

    Google Scholar 

  8. Cîrstea, C.: A coalgebraic approach to linear-time logics. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 426–440. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type specifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 576–587. Springer, Heidelberg (1976)

    Chapter  Google Scholar 

  10. Goguen, J., Thatcher, J.: Initial algebra semantics. In: Switching and Automata Theory, SWAT (FOCS) 1974, pp. 63–77. IEEE Computer Society (1974)

    Google Scholar 

  11. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3 (2007)

    Google Scholar 

  12. Hennicker, R., Wirsing, M.: Observational Specification: A Birkhoff Theorem. In: Workshop on Theory and Applications of Abstract Data Types, WADT 1985, Selected Papers, pp. 119–135. Springer (1985)

    Google Scholar 

  13. Hoare, A.: Communicating sequential processes. Prentice-Hall (1985)

    Google Scholar 

  14. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 109–129. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Kelly, M.: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on. Bull. Austral. Math. Soc. 22, 1–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kissig, C., Kurz, A.: Generic trace logics. arXiv preprint 1103.3239 (2011)

    Google Scholar 

  17. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Coalgebraic Methods in Computer Science, CMCS 1999. ENTCS, vol. 29, pp. 259–274. Elsevier (1999)

    Google Scholar 

  18. Reichel, H.: Behavioural equivalence — a unifying concept for initial and final specification methods. In: Math. Models in Comp. Systems, Proc. 3rd Hungarian Comp. Sci. Conference, pp. 27–39 (1981)

    Google Scholar 

  19. Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset construction, coalgebraically. In: Lodaya, K., Mahajan, M. (eds.) Proc. IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 272–283 (2010)

    Google Scholar 

  20. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1:9) (2013)

    Google Scholar 

  21. Tao, T.: An Introduction to Measure Theory. AMS (2011)

    Google Scholar 

  22. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, LICS 1997, pp. 280–291 (1997)

    Google Scholar 

  23. van Glabbeek, R.: The linear time-branching time spectrum (extended abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)

    Google Scholar 

  24. Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurz, A., Milius, S., Pattinson, D., Schröder, L. (2015). Simplified Coalgebraic Trace Equivalence. In: De Nicola, R., Hennicker, R. (eds) Software, Services, and Systems. Lecture Notes in Computer Science, vol 8950. Springer, Cham. https://doi.org/10.1007/978-3-319-15545-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15545-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15544-9

  • Online ISBN: 978-3-319-15545-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics