Abstract
The ubiquitous use of the Internet has led to the emergence of countless social media and social networking platforms, which generate large-scale digital data records of human behaviors online. Here we review the literature on online interactions, focusing on two main themes: social link formation and online communication. The former is often studied in the context of network evolution models and link prediction or recommendation tasks; the latter combines classic social science theories on collective human behaviors with analysis of big data enabled by advanced computation techniques. But the structure of the network, and the flow of information through the network influence each other. We present a case study to illustrate the connections between social link formation and online communication. Analysis of longitudinal micro-blogging data reveals that people tend to follow others after seeing many messages by them. We believe that research on online interactions will benefit from a deeper understanding of the mutual interactions between the dynamics on the network (communication) and the dynamics of the network (evolution).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Yahoo! Meme was a social micro-blogging system similar to Twitter, active between 2009 and 2012.
- 2.
Lyapunov’s condition, \(\frac{1} {\sigma _{n}^{4}} \sum _{\ell=1}^{n}E[(X(\ell) - p(\ell))^{4}]\mathop{\longrightarrow }\limits^{n \rightarrow \infty }0\) where X(ℓ) is a random Bernoulli variable with success probability p(ℓ) [80], is consistent with numerical tests. Details are omitted for brevity.
References
Cho, A. (2009). Ourselves and our interactions: The ultimate physics problem? Science, 325, 406.
Kumar, R., Novak, J., & Tomkins, A. (2006). Structure and evolution of online social networks. In Proceedings of SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. -L., Brewer, D., et al. (2009). Computational social science. Science, 323(5915), 721–723.
Vespignani, A. (2009). Predicting the behavior of techno-social systems. Science, 325(5939), 425–428.
Barabási, A. -L., & Albert, R. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435(7039), 207–211.
Albert, R., & Barabási, A. -L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.
Barrat, A., Barthélemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.
Newman, M. E. J. (2010). Networks: An introduction. Oxford: Oxford University Press.
Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press.
Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.
Newman, M. E. J., Watts, D. J., & Strogatz, S. H. (2002). Random graph models of social networks. Proceedings of the National Academy of Sciences (PNAS), 99(Suppl 1), 2566–2572.
Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.
Krackhardt, D., & Handcock, M. S. (2007). Heider vs. simmel: Emergent features in dynamic structure. In E. M. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, A. X. Zheng (Eds.), Statistical network analysis: models, issues, and new directions (pp. 14–27). Berlin: Springer.
Leskovec, J., Backstrom, L., Kumar, R., & Tomkins, A. (2008). Microscopic evolution of social networks. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 462–470).
Romero, D. M., & Kleinberg, J. (2010). The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).
Perra, N., Gonçalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Time scales and dynamical processes in activity driven networks. Nature Scientific Reports, 2, 469.
Rocha, L. E. C., Liljeros, F., & Holme, P. (2011). Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Computational Biology, 7(3), e1001109.
Barbieri, N., Bonchi, F., & Manco, G. (2013). Cascade-based community detection. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 33–42).
Barabási, A. -L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
Dorogovtsev, S., Mendes, J., & Samukhin, A. (2000). Structure of growing networks with preferential linking. Physical Review Letters, 85(21), 4633–4636.
Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Physical Review Letters, 96(21), 218701.
Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (1999). The web as a graph: measurements, models and methods. Lecture Notes in Computer Science (LNCS), 1627, 1–18.
Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., & Upfal, E. (2000). Stochastic models for the web graph. In Proceedings of IEEE Annual Symposium on Foundations of Computer Science (pp. 57–65).
Gallos, L., Rybski, D., Liljeros, F., Havlin, S., & Makse, H. (2012). How people interact in evolving online affiliation networks. Physical Review X, 2(3), 031014.
McPherson, M., Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444.
Papadopoulos, F., Kitsak, M., Ángeles Serrano, M., Boguña, M., & Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature, 489(7417), 537–540.
Weng, L., & Lento, T. (2014). Topic-based clusters in egocentric networks on Facebook. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).
Simmel, G., & Wolff, K. H. (1950). The Sociology of Georg Simmel. New York: The Free Press.
Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1.
Clauset, A., Moore, C., & Newman, M. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(1), 98–101.
Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., et al. (2013). The role of information diffusion in the evolution of social networks. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 356–364).
Cowan, G. (1998). Statistical data analysis. Oxford: Oxford Science Publications.
Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3), 211–230.
Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of American Society for Information Science and Technology (JASIST), 58(7), 1019–1031.
Backstrom, L., & Leskovec, J. (2011). Supervised random walks: Predicting and recommending links in social networks. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 635–644). ACM.
Lou, T., Tang, J., Hopcroft, J., Fang, Z., & Ding, X. (2010). Learning to predict reciprocity and triadic closure in social networks. ACM Transactions on Embedded Computing Systems, 9(4), 5.
Schifanella, R., Barrat, A., Cattuto, C., Markines, B., & Menczer, F. (2010). Folks in folksonomies: social link prediction from shared metadata. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 271–280).
Anderson, R. M., May, R. M., & Anderson, B. (1992). Infectious diseases of humans: Dynamics and control (Vol. 28). Oxford: Oxford University Press.
Daley, D. J., & Kendall, D. G. (1964). Epidemics and rumours. Nature, 204(4963), 1118–1119.
Goffman, W., & Newill, V. A. (1964). Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204(4955), 225–228.
Granovetter, M. S. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1433.
Morris, S. (2000). Contagion. Review of Economic Studies, 67(1), 57–78.
Backstrom, L., Huttenlocher, D., Kleinberg, J., & Lan, X. (2006). Group formation in large social networks: Membership, growth, and evolution. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 44–54).
Bakshy, E., Karrer, B., & Adamic, L. (2009). Social influence and the diffusion of user-created content. In Proceedings of ACM Conference on Electronic Commerce (pp. 325–334).
Cosley, D., Huttenlocher, D., Kleinberg, J., Lan, X., & Suri, S. (2010). Sequential influence models in social networks. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).
Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In Proceedings of International Conference on World Wide Web (WWW).
Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.
Weng, L., Menczer, F., & Ahn, Y. -Y. (2013). Virality prediction and community structure in social networks. Nature Scientific Reports, 3(2522).
Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Nature Scientific Reports, 2(335).
Kossinets, G., & Watts, D. J. (2009). Origins of homophily in an evolving social network1. American Journal of Sociology, 115(2), 405–450.
McPherson, J. M., & Smith-Lovin, L. (1987). Homophily in voluntary organizations: Status distance and the composition of face-to-face groups. American Sociological Review, 52(3), 370–379.
Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences (PNAS), 106(51), 21544–21549.
Şimşek, O., & Jensen, D. (2008). Navigating networks by using homophily and degree. Proceedings of the National Academy of Sciences (PNAS), 105(35), 12758–12762.
Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., & Suri, S. (2008). Feedback effects between similarity and social influence in online communities. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 160–168).
Jamieson, K. H., & Cappella, J. N. (2009). Echo chamber: Rush Limbaugh and the conservative media establishment. Oxford: Oxford University Press.
Conover, M., Ratkiewicz, J., Francisco, M., Gonçalves, B., Flammini, A., & Menczer, F. (2011). Political polarization on twitter. In Proceedings of 5th International AAAI Conference on Weblogs and Social Media (ICWSM).
Shalizi, C., & Thomas, A. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 40(2), 211–239.
Granovetter, M. (1995). Getting a job: A study of contacts and careers. Chicago: University of Chicago Press.
Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of ACM International World Wide Web Conference (WWW) (pp. 519–528).
Brown, J., & Reingen, P. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer Research, 14(3), 350–362.
Friedkin, N. (1980). A test of structural features of granovetter’s strength of weak ties theory. Social Networks, 2(4), 411–422.
Granovetter, M. (1983). The strength of weak ties: A network theory revisited. Sociological Theory, 1(1), 201–233.
Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490.
Lin, N., Ensel, W. M., & Vaughn, J. C. (1981). Social resources and strength of ties: Structural factors in occupational status attainment. American Sociological Review, 46, 393–405.
Nelson, R. E. (1989). The strength of strong ties: Social networks and intergroup conflict in organizations. Academy of Management Journal, 32(2), 377–401.
Onnela, J. -P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences (PNAS), 104(18), 7332–7336.
Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of ACM International Conference on Human Factors in Computing Systems (CHI) (pp. 211–220).
Wellman, B., & Wortley, S. (1990). Different strokes from different folks: Community ties and social support. American Journal of Sociology, 96(3), 558–588.
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E., et al. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.
Putnam, R. D. (2001). Bowling alone: The collapse and revival of American community. New York: Simon and Schuster.
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 9(10), 178–190.
Huberman, B., Romero, D., & Wu, F. (2009). Social networks that matter: Twitter under the microscope. First Monday, 14(1), 8.
Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling users’ activity on Twitter networks: Validation of Dunbar’s number. PLoS One, 6(8), e22656.
Wu, F., & Huberman, B. A. (2007). Novelty and collective attention. Proceedings of the National Academy of Sciences (PNAS), 104(45), 17599–17601.
Perra, N., Baronchelli, A., Mocanu, D., Gonçalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Random walks and search in time varying networks. Physical Review Letters, 109, 238701.
Shaw, L. B., & Schwartz, I. B. (2010). Enhanced vaccine control of epidemics in adaptive networks. Physical Review E, 81, 046120.
Volz, E., & Meyers, L. A. (2009). Epidemic thresholds in dynamic contact networks. Journal of the Royal Society Interface, 6, 233241.
Billingsley, P. (1995). Probability and measure (p. 362). New York: Wiley.
Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: reasoning about a highly connected world. Cambridge: Cambridge University Press.
Acknowledgements
We thank Jacob Ratkiewicz, Nicola Perra, Bruno Gonçalves, Carlos Castillo, Francesco Bonchi, and Rossano Schifanella for their contributions to the case study presented in this chapter; Yahoo Labs for making the Meme data available; and the James S. McDonnell Foundation, National Science Foundation, and DARPA grant W911NF-12-1-0037 for partial support of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Weng, L., Menczer, F., Flammini, A. (2015). Online Interactions. In: Gonçalves, B., Perra, N. (eds) Social Phenomena. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14011-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-14011-7_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14010-0
Online ISBN: 978-3-319-14011-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)